Currently available evidence supports that the predominant route of human-to-human transmission of the SARS-CoV-2 is through respiratory droplets. Indirect hands contact with surfaces contaminated by infectious droplets subsequently touching the mouth, nose or eyes seems to be another route of an indirect contact transmission. Persistence of the virus on different surfaces and other materials has been reported in recent studies: SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard. Viable virus was detected up to 72 h after application to different surfaces, although infectivity decay was also observed. This evidence suggests the likelihood that waste generated from patients affected by COVID-19 or subjects in quarantine treated in private houses or in areas different from hospitals and medical centres could be contaminated by SARS-CoV-2. Consequently, waste streams may represent a route for viral spreading being a potential risk also for the operators directly involved in the different phases of waste management. To address this concern, a specific multidisciplinary working group was settled by the Italian National Institute of Health (ISS) during the COVID-19 emergency, in order to establish guidelines related to solid waste collection, delivering, withdrawal, transport, treatment and disposal. Temporary stop of waste sorting, instructions for the population on how to package waste, instructions for Companies and operators for the adoption of adequate personal protection equipment (PPE), the use and sanitation of proper vehicles were among the main recommendations provided to the community by publications of freely downloadable reports and infographics in layman language. Incineration, sterilization and properly managed landfills were identified as the facilities to be preferentially adopted for the treatment of this kind of waste, considering the main inactivation strategies of SARS-CoV-2 (e.g. treatment length > 9 days and temperature > 70 °C for more than 5 min).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7340013PMC
http://dx.doi.org/10.1016/j.scitotenv.2020.140803DOI Listing

Publication Analysis

Top Keywords

waste
8
sars-cov-2
5
minimization spreading
4
spreading sars-cov-2
4
sars-cov-2 household
4
household waste
4
waste produced
4
produced subjects
4
subjects covid-19
4
covid-19 quarantine
4

Similar Publications

Development of high-throughput electrospun chitosan/PEO-CNC composite membranes with enhanced antibacterial and oil-water separation properties.

Int J Biol Macromol

January 2025

Plant Fibril Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.

Untreated waste liquid mixtures often support large bacterial populations, posing challenges to effective purification due to high volume and limited filtration efficiency. This study aims to develop a multifunctional filtration membrane that combines both filtration and sterilization, enhancing overall purification efficiency. Using electrospinning technology, we fabricated a superhydrophilic, oil-repellent membrane by integrating the hydrophilic properties of chitosan, antibacterial N-halamine groups, and the mechanical strength of cellulose nanocrystals (CNC).

View Article and Find Full Text PDF

The interaction between dissolved organic matter (DOM) and ferrihydrite (Fh) is a crucial process to control the environmental behavior of heavy metals (HMs) in soil environments, with DOM playing a particularly strong role in HMs fate. Since chemical properties of DOM vary based on different soil parent materials, the underlying impact of DOM-Fh associations on HMs binding remains unclear. This study systematically investigated the interactions between DOM from three soil parent materials (fluvial alluvium: FDOM, sand-shale: SDOM and granite: GDOM) and Fh, and meanwhile understand their effects on the environmental behavior of Cd and Pb under various environmental conditions.

View Article and Find Full Text PDF

Pharmaceuticals and per- and polyfluoroalkyl substances (PFAS) are persistent organic micropollutants (OMPs) posing environmental and health risks due to their bioaccumulative nature and potential toxicity. These OMPs spread to the environment due to the extensive use in today's society. Conventional wastewater treatment plants (WWTPs) are not designed to effectively remove these contaminants, making WWTPs an important pathway, especially for pharmaceuticals, to the aquatic environment.

View Article and Find Full Text PDF

Aquaculture systems generate large amounts of sludge that represent serious environmental threats if discharged directly into local ecosystems. However, this nutrient-rich sediment can contribute to nutrient cycling by being applied as an organic fertilizer to ornamental medicinal trees during their early growth stages. To investigate the potential advantages of using recirculating aquaculture system sludge (RASS) and biofloc technology sludge (BFTS) as organic fertilization alternatives to chemical fertilization, a pot trial was conducted at the Faculty of Agriculture, Cairo University, Egypt.

View Article and Find Full Text PDF

Sleep and circadian rhythms are regulated by dynamic physiologic processes that operate across multiple spatial and temporal scales. These include, but are not limited to, genetic oscillators, clearance of waste products from the brain, dynamic interplay among brain regions, and propagation of local dynamics across the cortex. The combination of these processes, modulated by environmental cues, such as light-dark cycles and work schedules, represents a complex multiscale system that regulates sleep-wake cycles and brain dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!