Long non-coding RNA Linc00092 inhibits cardiac fibroblast activation by altering glycolysis in an ERK-dependent manner.

Cell Signal

Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, PR China; Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, Guangdong 510120, PR China. Electronic address:

Published: October 2020

Aims: Cardiac fibroblast (CF) activation is the key event for cardiac fibrosis. The role of glycolysis and the glycolysis-related lncRNAs in CF activation are unknown. Thus, we aimed to investigate the role of glycolysis in CF activation and to identify the glycolysis-related lncRNAs involved.

Main Methods: Glycolysis-related lncRNAs were searched and their expression profiles were validated in activated human CF (HCF) and human failing heart tissues. Expression of the target lncRNA was manipulated to determine its effects on HCF activation and glycolysis. The underlying mechanisms of lncRNA-dependent glycolysis regulation were also addressed.

Key Findings: HCF activation induced by transforming growth factor-β1 was accompanied by an enhanced glycolysis, and 2-Deoxy-d-glucose, a specific glycolysis inhibitor, dramatically attenuated HCF activation. Twenty-eight glycolysis-related lncRNAs were identified and Linc00092 expression was changed mostly upon HCF activation. In human heart tissue, Linc00092 is primarily expressed in cardiac fibroblasts. Linc00092 knockdown activated HCFs with enhanced glycolysis, while its overexpression rescued the activated phenotype of HCFs and down-regulated glycolysis. Restoration of glycolysis abolished the anti-fibrotic effects conferred by Linc00092. Linc00092 inhibited ERK activation in activated HCFs, and ERK inhibition counteracted the fibrotic phenotype in Linc00092 knockdown HCFs.

Significance: These results revealed that Linc00092 could attenuate HCF activation by suppressing glycolysis. The inhibition of ERK by Linc00092 may play an important role in this process. Together, this provides a better understanding of the mechanism of CF activation and may serve as a novel target for cardiac fibrosis treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2020.109708DOI Listing

Publication Analysis

Top Keywords

hcf activation
20
glycolysis-related lncrnas
16
activation
11
glycolysis
11
linc00092
9
cardiac fibroblast
8
fibroblast activation
8
cardiac fibrosis
8
role glycolysis
8
enhanced glycolysis
8

Similar Publications

Early life stress (ELS) is associated with an increased risk for neuropsychiatric disorders, and both neuroinflammation and mitochondrial dysfunction seem to be central to mental health. Herein, using an animal model of ELS, a single episode of maternal deprivation (MD, 24 h on pnd 9) extensively documented to elicit behavioural anomalies in male and female Wistar rats, we investigated its consequences in terms of neuroinflammation and mitochondrial dynamics in the prefrontal cortex (PFC) and the hippocampal formation (HCF). MD differentially affected the brain content of cytokines: MD induced a transient increase in pro-inflammatory cytokines (IL-1β and IL-6) in the PFC, as well as in the levels of the anti-inflammatory cytokine IL-10 in the HCF.

View Article and Find Full Text PDF

Acute and chronic inflammation are important pathologies of benign airway stenosis (BAS) fibrosis, which is a frequent complication of critically ill patients. cGAS-STING signalling has an important role in inflammation and fibrosis, yet the function of STING in BAS remains unclear. Here we demonstrate using scRNA sequencing that cGAS‒STING signalling is involved in BAS, which is accompanied by increased dsDNA, expression and activation of STING.

View Article and Find Full Text PDF

Inner Helmholtz layer control through co-solvent strategies for high-performance copper hexacyanoferrate//zinc battery.

J Colloid Interface Sci

December 2024

Department of Mechanical Engineering, University of Alberta, 9211-116 Street NW., Edmonton, Alberta T6G 1H9, Canada. Electronic address:

Copper hexacyanoferrate (CuHCF) demonstrates high working voltage, convenient synthesis methods, and economic benefits. However, capacity decay of CuHCF//Zn full cells is usually observed in aqueous electrolytes due to the dissolution of Cu and Fe, as indicated by the irreversible insertion of Zn ions and the consequent formation of ZnCuHCF. To address these challenges, a cathode-oriented electrolyte engineering design employing a methyl acetate (MA) co-solvent with zinc triflate (Zn(OTf)) salt electrolyte is implemented.

View Article and Find Full Text PDF

The present investigation delves into the redox reaction between -chlorophenol (-CP) and hexacyanoferrate(III) [HCF(III)], catalyzed by Ag(I) in an alkaline environment. Findings reveal a first-order dependence on both -CP and the oxidant, and the reaction rate showcased a first-order reaction towards Ag(I), which was further amplified by the medium as per the equation = + [OH]. Interestingly, the ionic strength remained unchanged throughout the reaction, exerting no discernible effect on the reaction rate.

View Article and Find Full Text PDF

Modulation of systemic antioxidant and immune responses in red abalone (Haliotis rufescens) during the recovery phase of anesthesia, in preparation for grafting surgery.

Comp Biochem Physiol A Mol Integr Physiol

December 2024

Centro de Investigaciones Biológicas del Noroeste, S.C., Programa de Acuicultura. Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz, Baja California Sur 23000, Mexico. Electronic address:

The use of anesthetic agents as pre-operatory treatment to pearl seeding surgery can be stressful to organisms and activate various physiological response mechanisms. This study evaluated some parameters of the systemic antioxidant and immune responses in red abalone (Haliotis rufescens) exposed to 0.25 mL L eugenol (EUB), 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!