Genotoxic effects of mycotoxins.

Toxicon

University of Ankara, Faculty of Nursing, Department of Midwifery, Plevne Street, No: 5, 06230, Altındağ, Ankara, Turkey; University of Ankara, Faculty of Health Sciences, Fatih Street No: 197/A 06290 Keçiören/ankara, Turkey. Electronic address:

Published: October 2020

Fungi produce mycotoxins in the presence of appropriate temperature, humidity, sufficient nutrients and if the density of the mushroom mass is favorable. Although all mycotoxins are of fungal origin, all toxic compounds produced by fungi are not called mycotoxins. The interest in mycotoxins first started in the 1960s, and today the interest in mycotoxin-induced diseases has increased. To date, 400 mycotoxins have been identified and the most important species producing mycotoxins belongs to Aspergillus, Penicillium, Alternaria and Fusarium genera. Mycotoxins are classified as hepatotoxins, nephrotoxins, neurotoxins, immunotoxins etc. In this review genotoxic and also other health effects of some major mycotoxin groups like Aflatoxins, Ochratoxins, Patulin, Fumonisins, Zearalenone, Trichothecenes and Ergot alkaloids were deeply analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxicon.2020.07.004DOI Listing

Publication Analysis

Top Keywords

mycotoxins
8
genotoxic effects
4
effects mycotoxins
4
mycotoxins fungi
4
fungi produce
4
produce mycotoxins
4
mycotoxins presence
4
presence appropriate
4
appropriate temperature
4
temperature humidity
4

Similar Publications

Health risk assessment and determination of bisphenol A and aflatoxin M1 in infant formula.

BMC Nutr

January 2025

Department of Environmental Health Engineering, Division of Food Safety and Hygiene, School of public health, Tehran University of Medical Sciences, Tehran, Iran.

Background: Bisphenol A (BPA) is one of the chemical compounds used in food packaging, so it can migrate from the packaging into food. Also, environmental pollution of this compound is high due to its high use. Therefore, it may enter food chains through the environment.

View Article and Find Full Text PDF

Environmental Mycotoxins: A Potential Etiological Factor for Neurodegenerative Diseases?

Toxicology

January 2025

College of Life Science, Yangtze University, Jingzhou 434025, China. Electronic address:

Mycotoxins are potential environmental risk factors for neurodegenerative diseases. These toxins penetrate the central nervous system via a compromised blood-brain barrier, which may cause oxidative stress and neuroinflammation, these can also contribute to amyloid-beta (Aβ) plaque accumulation, Tau protein hyperphosphorylation, and neurofibrillary tangle formation. Mycotoxins also activate microglia, cause neuronal apoptosis, and disrupt central nervous system function.

View Article and Find Full Text PDF

Mycotoxin toxicity and its alleviation strategy on female mammalian reproduction and fertility.

J Adv Res

January 2025

College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory of Research On Clinical Molecular Diagnosis for High Incidence Diseases in Western Guangxi, Reproductive Medicine of Guangxi Medical and Health Key Discipline Construction Project, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China. Electronic address:

Background: Mycotoxin, a secondary metabolite of fungus, found worldwide and concerning in crops and food, causing multiple acute and chronic toxicities. Its toxic profile includes hepatotoxicity, carcinogenicity, teratogenicity, estrogenicity, immunotoxicity, and neurotoxicity, leading to deleterious impact on human and animal health. Emerging evidence suggests that it adversely affects perinatal health, progeny by its ability to cross placental barriers.

View Article and Find Full Text PDF

Introduction: In the environment, mycotoxins and fungicides frequently coexist, potentially causing synergistic risks to organisms. Epoxiconazole (EPO) and aflatoxin B1 (AFB1) are a common fungicide and mycotoxins, respectively, which are widely present in the environment and have toxic effects on multiple organs once entering the organism, but it is still unclear whether the co-exposure has a synergistic toxic effect.

Objectives: This study delves into the molecular mechanisms underlying the co-exposure to EPO and AFB1, emphasizing multi-organ toxicity in female zebrafish (F0 generation) and potential transgenerational impacts on the offspring embryos (F1 generation) through multi-omics approaches.

View Article and Find Full Text PDF

Objective: This study investigated the fungal contamination profile of cocoa beans from cocoa-growing regions in Ghana, with particular emphasis on the potential impact of ochratoxigenic species.

Methods: A total of 104 fermented and dried cocoa beans were randomly collected from farmers for analysis. Fungal isolation was conducted using potato dextrose agar and malt extract agar media.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!