Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Carotid atherosclerosis represents 8 to 15% of ischemic strokes in relation to the concept of "vulnerable" plaque. Contrast enhanced ultrasound (CEUS) can detect moving microbubbles within the plaque corresponding to neovessels that constitute "precursors" of vulnerable plaque and intraplaque hemorrhage. CEUS was not studied specifically in acute ischemic strokes. The aim of this study is to analyse the prevalence of CEUS carotid plaque ipsilateral at the ischemic stroke as well as the main characteristics of contrast-plaques.
Method: A single-centre prospective pilot study involving 33 consecutive patients with a stroke ≤10 days, diagnosed by an MRI with positive diffusion sequence and having a carotid plaque thickness ≥2.5mm with low or heterogeneous echogenicity, located in the ipsilateral carotid territory at the stroke. Plaque echogenicity was done by visual analysis and by measurement of the gray scale median (GSM). A transcranial Doppler monitoring was carried out in search of HITS. The contrast ultrasound was performed after 2.5 cc IV injection of SonoVue®. A video clip was recorded after injection which was used for interpretation by visual analysis in 3 grades, provided by two independent expert readers.
Results: The population consisted of 10 women and 23 men aged 73 on average. The topography of strokes in the carotid territory was located on the right in 11 (33%) cases and on the left in 22 (67%) cases. Seventeen patients had carotid stenosis between 0 and 49% according to the Nascet method and 16 patients had stenosis of 50 to 99%. The visual characterisation of the plaques had echolucent dominance (Type 1-2) in 18 cases and echogenic dominance (Type 3-4a) in 15 cases. Cardiovascular risk factors were common with no difference by sex. The inter-observer agreement of plaque enhancement was moderate in first reading (k=0.48) and excellent at consensus (k=0.91). Only one disagreement was found. Contrast agent enhancement of carotid plaque was observed in 11/32 patients, representing a prevalence of 34.4% - CI95% [17.9-50.9]. Variables associated with contrast plaque included the absence of antiplatelet drug (63.6% vs. 23.8%, P=0.05) and the presence of a regular edge on the plaque (91% vs. 48%, P=0.04). There was no difference in contrast enhancement for stenosis>or<50% in diameter and neither for the type of plaque.
Conclusion: In a consecutive cohort of 33 patients, the prevalence of CEUS from an ipsilateral carotid plaque to a recent acute ischemic stroke was 34.4%. There was a statistically significant association between the contrast enhancement of the plaque and the absence of antiplatelet drug (P=0.05) and also the presence of a regular edge on the plaque (P=0.04). There was no correlation between plaque contrast and clinical and biological characteristics of patients or the presence of HITS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neurol.2020.03.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!