Type I interferons play a critical role in host defense against influenza virus infection. Interferon cascade induces the expression of interferon-stimulated genes then subsequently promotes antiviral immune responses. The microRNAs are important regulators of innate immunity, but microRNAs-mediated regulation of interferon cascade during influenza infection remains to be fully identified. Here we found influenza A virus (IAV) infection significantly inhibited miR-93 expression in alveolar epithelial type II cells through RIG-I/JNK pathway. IAV-induced downregulation of miR-93 was found to upregulate JAK1, the target of miR-93, and then feedback promote antiviral innate response by facilitating IFN effector signaling. Importantly, in vivo administration of miR-93 antagomiR markedly suppressed IAV infection, protecting mice form IAVs -associated death. Hence, the inducible downregulation of miR-93 feedback suppress IAV infection by strengthening IFN-JAK-STAT pathway via JAK1 upregulation, and in vivo inhibition of miR-93 bears considerable therapeutic potential for suppressing IAV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2020.106754DOI Listing

Publication Analysis

Top Keywords

iav infection
16
inhibition mir-93
8
effector signaling
8
influenza infection
8
influenza virus
8
interferon cascade
8
downregulation mir-93
8
mir-93 feedback
8
infection
7
mir-93
6

Similar Publications

Background: In China many respiratory pathogens stayed low activities amid the COVID-19 pandemic due to strict measures and controls. We here aimed to study the epidemiological and clinical characteristics of pediatric inpatients with Mycoplasma pneumoniae pneumonia (MPP) after the mandatory COVID-19 restrictions were lifted, in comparison to those before the COVID-19 pandemic.

Methods: We here included 4,296 pediatric patients with MPP, hospitalized by two medical centers in Jiangsu Province, China, from January 2015 to March 2024.

View Article and Find Full Text PDF

Long non-coding RNA C1RL-AS1 aggravates influenza A virus pneumonia through miR-16-5p/LAMP3.

Virus Genes

January 2025

Department of Pediatrics, Taihe Hospital, Affiliated Hospital of Hubei University of Medicine, No.32, Renmin South Road, Shiyan, 442000, China.

Influenza A viruses continue to pose a serious threat to public health and economic stability. To investigate the role of C1RL-AS1 in influenza A virus (IAV) pneumonia. Using RT-qPCR analysis, we determined C1RL-AS1 expression levels in children with IAV-infected pneumonia and A549 cells.

View Article and Find Full Text PDF

The current situation with H5N1 highly pathogenic avian influenza virus (HPAI) is causing a worldwide concern due to multiple outbreaks in wild birds, poultry, and mammals. Moreover, multiple zoonotic infections in humans have been reported. Importantly, HPAI H5N1 viruses with genetic markers of adaptation to mammals have been detected.

View Article and Find Full Text PDF

Zoonotic transmission of novel Influenza A variant viruses detected in Brazil during 2020 to 2023.

Nat Commun

December 2024

Laboratório de Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências (LVRE), Oswaldo Cruz Foundation, Fiocruz, Rio de Janeiro, Brazil.

Zoonotic infections (swine-human) caused by influenza A viruses (IAVs) have been reported and linked to close contact between these species. Here, we describe eight human IAV variant infections (6 mild and 2 severe cases, including 1 death) detected in Paraná, Brazil, during 2020-2023. Genomes recovered were closely related to Brazilian swIAVs of three major lineages (1 A.

View Article and Find Full Text PDF

The PA-X host shutoff site 100 V exerts a contrary effect on viral fitness of the highly pathogenic H7N9 influenza A virus in mice and chickens.

Virulence

December 2025

Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China.

Several viruses, including influenza A virus (IAV), encode viral factors to hijack cellular RNA biogenesis processes to direct the degradation of host mRNAs, termed "host shutoff." Host shutoff enables viruses to simultaneously reduce antiviral responses and provides preferential access for viral mRNAs to cellular translation machinery. IAV PA-X is one of these factors that selectively shuts off the global host genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!