Background: Ankle-foot orthoses with plantarflexion resistance (AFO-Ps) improve knee flexion in the stance phase on the paretic side in patients with hemiparesis. However, AFO-Ps decrease ankle power generation in the late stance phase and do not improve the knee flexion in the swing phase based on insufficient push-off at the late stance, resulting in lower toe clearance.
Research Question: This study sought to investigate the effect of an AFO with dorsiflexion resistance, which was implemented by our developed device with spring-cam mechanism attached to the AFO-P (Gait Solution; Pacific Supply Co., Ltd., Japan), on kinetics and kinematics in the lower limb during gait in patients with hemiparesis.
Methods: Eleven patients with hemiparesis due to stroke walked on a 7-m walkway at a self-selected comfortable pace in the following conditions: (a) walking using the AFO-P with the proposed device with a spring-cam mechanism (AFO-PCAM), (b) walking using the AFO-P without our device (AFO-P), and (c) walking using no device (barefoot condition). Gait kinematics and kinetics were collected using a three-dimensional motion analysis system and four ground-reaction force plates. Changes in all parameters from the barefoot to AFO-PCAM and AFO-P conditions were compared using the Wilcoxon signed-rank test.
Results: In the AFO-PCAM condition, decrease in the maximum ankle power generation in the late-stance phase was significantly smaller than that in the AFO-P condition (p = 0.041). We noted a significant higher change in knee flexion in the paretic swing phase in the AFO-PCAM condition relative to that in the AFO-P condition (p = 0.016). The effect size for the comparisons of change was large (r ≧ 0.5).
Significance: Our device facilitated the realization of the ankle plantarflexion power in the late-stance phase because of dorsiflexion resistance, increasing the knee flexion angle during the swing phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gaitpost.2020.06.029 | DOI Listing |
Acta Neurochir (Wien)
January 2025
Department of Orthopaedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, Republic of Korea.
Background: The degenerative spondylosis can cause the difficulty in maintaining sagittal and coronal alignment of spine, and X-ray parameters are the gold standard to analyze the malalignment. This study aimed to develop a new 3D full body scanner to analyze the spinal balance and compare it to X-ray parameters.
Methods: Ninety-seven adult participants who suffer degenerative spondylosis underwent 3D full body scanning, whole spine X-rays, clinical questionnaires and body composition analyses.
Neurol Int
January 2025
Laboratório de Marcha, Centro de Medicina de Reabilitação de Alcoitão, 2649-506 Alcabideche, Portugal.
Background/objectives: Post-stroke hemiparetic gait often presents with asymmetric patterns to compensate for stability deficits. This study examines gait differences in chronic stroke patients with spastic hemiparesis based on initial foot contact type-forefoot versus rearfoot.
Methods: Thirty-four independently walking spastic hemiparetic patients were retrospectively analyzed.
Bioengineering (Basel)
January 2025
Research & Development, Aesculap AG, 78532 Tuttlingen, Germany.
Instability remains one of the most common indications for revision after total knee arthroplasty. To gain a better understanding of how an implant will perform in vivo and support surgeons in selecting the most appropriate implant design for an individual patient, it is crucial to evaluate the implant constraint within clinically relevant ligament and boundary conditions. Therefore, this study investigated the constraint of three different implant designs (symmetrical implants with and without a post-cam mechanism and an asymmetrical medial-stabilized implant) under anterior-posterior shear forces and internal-external rotation moments at different flexion angles in human cadaveric knees using a six-degrees-of-freedom joint motion simulator.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Orthopaedic Surgery, University of Illinois at Chicago, Chicago, IL 60612-7342, USA.
The anterior cruciate ligament (ACL) is a major ligament in the knee joint, and its function is crucial for both the movement and stability of the knee. Our research takes a novel approach by investigating the effect of meniscus tears on the ACL, how such tears will impact the stress on the ACL, and its overall compensation in response to the changes in the meniscus. : This study aims to investigate how the ACL compensates for the change in knee joint stability and contact pressures due to partial horizontal cleavage tears (HCTs) in the meniscus, such as partial meniscectomy and partial transplantation on knee joint stability and contact pressures.
View Article and Find Full Text PDFBioengineering (Basel)
January 2025
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR 999077, China.
: Falls and fall consequences in older adults are global health issues. Previous studies have compared postural sways or stepping strategies between older adults with and without fall histories to identify factors associated with falls. However, more in-depth neuromuscular/kinematic mechanisms have remained unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!