A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inclined algal biofilm photobioreactor (IABPBR) for cost-effective cultivation of lipid-rich microalgae and treatment of seawater-diluted anaerobically digested effluent from kitchen waste with the aid of phytohormones. | LitMetric

Previous study has demonstrated that freshwater can be replaced with seawater for dilution of feed to algal production and wastewater treatment, but high harvest cost in suspended-growth systems is still a troublesome limitation for large-scale production. Therefore, a novel inclined algal biofilm photobioreactor (IABPBR) was constructed for algal bioproduct production and treatment of seawater-diluted anaerobically digested effluent (SA) in this study. Fluffy polyester was selected as the best carrier for the algal biofilm among ten discarded materials. With the help of phytohormones, the viability of SDEC-18 was clearly enhanced and an algal biomass productivity of 5.66 g/m/d was achieved. The SDEC-18 biofilm provided removal capacities of 0.65, 0.25 and 3.31 g/m/d for TN, TP and COD. Phytohormones clearly enhanced the lipid biosynthesis, with an extraordinary lipid productivity of 3.98 g/m/d being achieved. Moreover, an automatic harvesting system was designed for the efficient harvesting process during large-scale production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.123761DOI Listing

Publication Analysis

Top Keywords

algal biofilm
12
inclined algal
8
biofilm photobioreactor
8
photobioreactor iabpbr
8
treatment seawater-diluted
8
seawater-diluted anaerobically
8
anaerobically digested
8
digested effluent
8
large-scale production
8
clearly enhanced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!