A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of inner polarity and viscosity of amphiphilic phospholipid polymer aggregates on the solubility enhancement of poorly water-soluble drugs. | LitMetric

Effects of inner polarity and viscosity of amphiphilic phospholipid polymer aggregates on the solubility enhancement of poorly water-soluble drugs.

Colloids Surf B Biointerfaces

Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. Electronic address:

Published: November 2020

We quantitatively evaluated the properties of aggregates of amphiphilic polymers formed in an aqueous medium and clarified the effect of the inside polarity and viscosity of the polymer aggregate on the solubilization of poorly water-soluble drugs. Three water-soluble amphiphilic 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers with various hydrophobic monomer units, namely, n-butyl methacrylate (BMA), 2-methacryloyloxyethyl butylurethane (MEBU), and 2-methacryloyloxyethyl benzylurethane (MEBZU), were synthesized. The different molecular interactions between the hydrophobic monomer units, such as hydrophobic interactions, hydrogen bonding, and dispersion force between the aromatic rings, were considered. Fluorescence spectroscopic measurements revealed that every polymer aggregate had almost the same polarity as that of ethanol. Also, the polymers with urethane bonds, poly(MPC-co-MEBU) and poly(MPC-co-MEBZU) had slightly higher polarity and viscosity inside the polymer aggregate than that of poly(MPC-co-BMA). The water solubility of nifedipine and indomethacin was clearly enhanced in the MPC polymer aqueous solution depending on the polymer structure. As indomethacin is less soluble in polar solvents than is nifedipine, it needed to be transferred deeper into the polymer aggregates for stable solubilization. It is plausible that the high viscosity inside the polymer aggregate prevented the diffusion of drug molecules. We concluded that not only the polarity inside the polymer aggregates and the strength of the interaction force between the polymer and drug, but also the viscosity inside the polymer aggregates were responsible for enhancing the solubilization of poorly water-soluble drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.111215DOI Listing

Publication Analysis

Top Keywords

polymer aggregates
16
polymer aggregate
16
inside polymer
16
polarity viscosity
12
water-soluble drugs
12
viscosity inside
12
polymer
11
solubilization water-soluble
8
hydrophobic monomer
8
monomer units
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!