Collapsin response mediator proteins (CRMPs) are ubiquitously expressed in neurons from worms to humans. A cardinal feature of CRMPs is to mediate growth cone collapse in response to Semaphorin-3A signaling through interactions with cytoskeletal proteins. These are critical regulatory roles that CRMPs play during neuritogenesis and neural network formation. Through post-translational modifications, such as phosphorylation, O-GlcNAcylation, SUMOylation, and proteolytic cleavage, CRMPs participate in synaptic plasticity by modulating NMDA receptors, L- and N-type voltage-gated calcium channels (VGCCs), thus affecting neurotransmitter release. CRMPs also possess histone deacetylase (HDAC) activity, which deacetylates histone H4 during neuronal death. Calcium-dependent proteolytic cleavage of CRMPs results in the truncation of CRMPs, producing a large 54 kD fragment (p54). Translocation of the p54 fragment into the nucleus leads to deacetylation of nuclear histone H4 and de-repression of transcription factor E2F1 expression. Increased expression of E2F1 elevates the expression of genes in cell cycle and death. These new and exciting studies lead to the realization that CRMPs are multifunctional proteins with both regulatory and enzymatic functions. Increasing numbers of studies associate these functions of CRMPs with the development of mental and neurological disorders, such as schizophrenia, Alzheimer's diseases, brain trauma, and stroke. This review focuses on new evidence showing the regulatory and enzymatic functions of CRMPs and highlights recent understandings of CRMPs' roles in neurological diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2020.104795 | DOI Listing |
J Fungi (Basel)
December 2024
Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
Recent research has revealed the calcium signaling significance in the production of cellulases in . While vacuoles serve as the primary calcium storage within cells, the function of vacuolar calcium transporter proteins in this process remains unclear. In this study, we conducted a functional characterization of four vacuolar calcium transport proteins in .
View Article and Find Full Text PDFMar Drugs
December 2024
Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France.
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown.
View Article and Find Full Text PDFCell Genom
December 2024
Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR, USA; Cancer Early Detection Advanced Research Institute, Oregon Health & Science University, Portland, OR, USA; Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA. Electronic address:
Single-cell methods to assess DNA methylation have not achieved the same level of cell throughput per experiment compared to other modalities, with large-scale datasets requiring extensive automation, time, and other resources. Here, we describe sciMETv3, a combinatorial indexing-based technique that enables atlas-scale libraries to be produced in a single experiment. To reduce the sequencing burden, we demonstrate the compatibility of sciMETv3 with capture techniques to enrich regulatory regions, as well as the ability to leverage enzymatic conversion, which can yield higher library diversity.
View Article and Find Full Text PDFVirology
December 2024
Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA. Electronic address:
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation.
View Article and Find Full Text PDFMed Sci (Paris)
December 2024
Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France.
Alterations in DNA methylation profiles are typically found in cancer cells, combining genome-wide hypomethylation with hypermethylation of specific regions, such as CpG islands, which are normally unmethylated. Driving effects in cancer development have been associated with alteration of DNA methylation in certain regions, inducing, for example, the repression of tumor suppressor genes or the activation of oncogenes and retrotransposons. These alterations represent prime candidates for the development of specific markers for the detection, diagnosis and prognosis of cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!