A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A facile fabrication of dissolving microneedles containing 5-aminolevulinic acid. | LitMetric

Photodynamic therapy induced by protoporphyrin IX (PpIX) is widely used to treat precancerous skin lesions. The penetration depth of the prodrug 5-aminolevulinic acid (5-ALA) using topical application is currently limited, which hampers the production of PpIX in deep seated lesions. To enhance 5-ALA delivery in deep skin layers, a soluble microneedles patch (MN-patch) containing 5-ALA has been successfully developed by using a fast solvent casting molding method which could be easily up-scaled. The shape, number and height of the needles have been designed according to the medical application and the mechanical strain necessary for skin insertion. Hyaluronic acid (HA) has been chosen as the needle materials due to its biocompatibility, fast solubility and biodegradation and was mixed with 5-ALA prior to casting. HA-based MN-patch containing 5-ALA have exhibited mechanical properties enabling a good insertion into the skin without significant damages to MN. Interactions between HA and 5-ALA were evaluated by Fourier transform infrared spectroscopy (FTIR) and carbon nuclear magnetic resonance (C NMR), stability of 5-ALA in the MN-patch was monitored by proton nuclear magnetic resonance (H NMR) and exhibited a good stability over 5 months after manufacturing. Dissolution rate of the whole patch was completed in 1 hour in ex vivo rat skin without cytotoxicity. Overall, the MN-patch can be a promising technique to enhance 5-ALA penetration and produce PpIX in deeper skin lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119554DOI Listing

Publication Analysis

Top Keywords

5-aminolevulinic acid
8
skin lesions
8
5-ala
8
enhance 5-ala
8
mn-patch 5-ala
8
nuclear magnetic
8
magnetic resonance
8
resonance nmr
8
skin
6
facile fabrication
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!