Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis.

Genomics

Laboratory of Biochemistry, Division of Basic Sciences, University of Crete Medical School, Heraklion 71003, Greece; Gene Regulation and Epigenetics group, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology of Hellas, Heraklion 70013, Greece. Electronic address:

Published: November 2020

The white adipose tissue (WAT) contributes to the metabolic imbalance observed in obesity and the metabolic syndrome (MetS) by mechanisms that are poorly understood. The aim of this study was to monitor changes in the transcriptome of epididymal WAT during the development of MetS. ApoE3L.CETP mice were fed a high fat (HFD) or a low-fat (LFD) diet for different time periods. Adipose RNA was analyzed by microarrays. We found an increasing number of differentially expressed transcripts during MetS development. In mice with MetS, 1396 transcripts were differentially expressed including transcripts related to immune/inflammatory responses and extracellular matrix enzymes, suggesting significant inflammation and tissue remodeling. The top list of pathways included focal adhesion, chemokine, B and T cell receptor and MAPK signaling. The data identify for the first time adipose gene signatures in apoE3L.CETP mice with diet-induced MetS and might open new avenues for investigation of potential biomarkers or therapeutic targets.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygeno.2020.06.053DOI Listing

Publication Analysis

Top Keywords

adipose tissue
8
metabolic syndrome
8
gene signatures
8
apoe3lcetp mice
8
differentially expressed
8
mets
5
transcriptome analysis
4
adipose
4
analysis adipose
4
tissue mouse
4

Similar Publications

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease.

Clin Radiol

November 2024

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:

Aim: To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction.

Materials And Methods: One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software.

View Article and Find Full Text PDF

The effect of long-chain n-3 PUFA on liver transcriptome in human obesity.

Prostaglandins Leukot Essent Fatty Acids

December 2024

Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Austria; Department of Medicine III and Karl Landsteiner Institute for Metabolic Diseases and Nephrology, Clinic Hietzing, Vienna, Austria. Electronic address:

Background And Aims: Obesity is associated with a higher risk of severe diseases such as atherosclerotic cardiovascular disease, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD). Polyunsaturated fatty acids, of the omega-3 family (n-3 PUFA), have been shown to reduce adipose tissue inflammation in obesity, as well as to have lipid-lowering effects and improve insulin sensitivity. However, direct effects on liver transcriptome in humans have not been described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!