What Constitutes a Gluconeogenic Precursor?

J Nutr

Department of Animal Science, North Carolina State University, Raleigh, NC, USA.

Published: September 2020

A gluconeogenic precursor is a biochemical compound acted on by a gluconeogenic pathway enabling the net synthesis of glucose. Recognized gluconeogenic precursors in fasting placental mammals include glycerol, lactate/pyruvate, certain amino acids, and odd-chain length fatty acids. Each of these precursors is capable of contributing net amounts of carbon to glucose synthesis via the tricarboxylic acid cycle (TCA cycle) because they are anaplerotic, that is, they are able to increase the pools of TCA cycle intermediates by the contribution of more carbon than is lost via carbon dioxide. The net synthesis of glucose from even-chain length fatty acids (ECFAs) in fasting placental mammals, via the TCA cycle alone, is not possible because equal amounts of carbon are lost via carbon dioxide as is contributed from fatty acid oxidation via acetyl-CoA. Therefore, ECFAs do not meet the criteria to be recognized as a gluconeogenic precursor via the TCA cycle alone. ECFAs are gluconeogenic precursors in organisms with a functioning glyoxylate cycle, which enables the net contribution of carbon to the intermediates of the TCA cycle from ECFAs and the net synthesis of glucose. The net conversion of ECFAs to glucose in fasting placental mammals via C3 metabolism of acetone may be a competent though inefficient metabolic path by which ECFA could be considered a gluconeogenic precursor. Defining a substrate as a gluconeogenic precursor requires careful articulation of the definition, organism, and physiologic conditions under consideration.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/nxaa166DOI Listing

Publication Analysis

Top Keywords

tca cycle
20
gluconeogenic precursor
16
net synthesis
12
synthesis glucose
12
fasting placental
12
placental mammals
12
recognized gluconeogenic
8
gluconeogenic precursors
8
length fatty
8
fatty acids
8

Similar Publications

Advancing anthocyanin extraction: Optimising solvent, preservation, and microwave techniques for enhanced recovery from merlot grape Marc.

Food Chem

December 2024

Wine Science Programme, School of Chemical Sciences, The University of Auckland | Waipapa Taumata Rau, 23 Symonds Street, Auckland 1010, New Zealand. Electronic address:

Grape marc, a by-product of winemaking, is a rich source of bioactive compounds, yet efficient extraction methods suitable for industrial application remain underexplored. This study presents an integrated, three-stage approach to optimise the extraction of anthocyanins, phenolics, and tannins from Merlot grape marc. In the first stage, 12 solvents were evaluated using conventional solvent extraction, with 50 % ethanol (EtOH) acidified with hydrochloric acid (HCl) achieving the highest anthocyanin recovery after eight extraction cycles (0.

View Article and Find Full Text PDF

Mechanism of Functional Compound Fruit Drinks in Regulating Serum Metabolism in Constipated Mice.

Int J Mol Sci

January 2025

Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China.

A compound fruit drink (CFD) is a functional beverage containing fruits, Chinese herbal medicine, and prebiotic fructose. Previous studies have shown the effect of a CFD on alleviating constipation and its impact on gut microbiota. However, a comprehensive analysis has not been reported in regard to the serum metabolism of CFDs.

View Article and Find Full Text PDF

Metabolic Reprogramming at the Edge of Redox: Connections Between Metabolic Reprogramming and Cancer Redox State.

Int J Mol Sci

January 2025

Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain.

The importance of redox systems as fundamental elements in biology is now widely recognized across diverse fields, from ecology to cellular biology. Their connection to metabolism is particularly significant, as it plays a critical role in energy regulation and distribution within organisms. Over recent decades, metabolism has emerged as a relevant focus in studies of biological regulation, especially following its recognition as a hallmark of cancer.

View Article and Find Full Text PDF

Asthma has been extensively studied in humans and animals, but the molecular mechanisms underlying asthma in Meishan pigs, a breed with distinct genetic and physiological characteristics, remain elusive. Understanding these mechanisms could provide insights into veterinary medicine and human asthma research. We investigated asthma pathogenesis in Meishan pigs through transcriptomic and metabolomic analyses of blood samples taken during autumn and winter.

View Article and Find Full Text PDF

Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina ( (L.) Crantz) is an oilseed plant belonging to this family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!