Natural polymers, particularly polysaccharide, have been used as drug delivery systems for a variety of therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and non-parenteral administration. Chitosan, the second most abundant naturally occurring polysaccharide after cellulose, is a biocompatible and biodegradable mucoadhesive polymer that is extensively used in the preparation of nanoparticles (NPs). Chitosan NPs loaded with drugs were found to be stable, permeable and bioactive. In this review, the importance of chitosan and its derivatives in drug delivery is illustrated, different methods of preparation of chitosan and chitosan derivatives NPs and their physio- chemical properties are addressed. Moreover, the desirable characteristics of successful NPs based drug delivery systems, as well as the pharmaceutical applications of these NPs are also clearly explored.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389450121666200711172536DOI Listing

Publication Analysis

Top Keywords

drug delivery
16
delivery systems
8
chitosan derivatives
8
chitosan
6
nps
5
chitosan nanoparticles
4
nanoparticles novel
4
drug
4
novel drug
4
delivery
4

Similar Publications

Leaky and structurally abnormal blood vessels and increased pressure in the tumor interstitium reduce the infiltration of CAR-T cells in solid tumors, including triple-negative breast cancer (TNBC). Furthermore, high burden of tumor cells may cause reduction of infiltrating CAR-T cells and their functional exhaustion. In this study, various effector-to-target (E:T) ratio experiments are established to model the treatment using CAR-T cells in leukemia (high E:T ratio) and solid tumor (low E:T ratio).

View Article and Find Full Text PDF

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

Thyroid-Targeted Nano-Bombs Empower HIFU for Graves' Disease.

Adv Sci (Weinh)

January 2025

The Department of Head and Neck Surgery, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, P. R. China.

Graves' disease (GD) is an autoimmune disorder with a high incidence rate, particularly affecting women of reproductive age. Current treatment modalities for GD carry significant disadvantages, especially for pregnant or nursing women. As a novel extracorporeal therapeutic technique, high-intensity focused ultrasound (HIFU) shows great promise for treating GD; however, its low treatment efficacy impedes clinical application.

View Article and Find Full Text PDF

Ischemic Area-Targeting and Self-Monitoring Nanoprobes Ameliorate Myocardial Ischemia/Reperfusion Injury by Scavenging ROS and Counteracting Cardiac Inflammation.

Adv Sci (Weinh)

January 2025

Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.

Precise and effective management of myocardial ischemia/reperfusion injury (MIRI) is still a formidable challenge in clinical practice. Additionally, real-time monitoring of drug aggregation in the MIRI region remains an open question. Herein, a drug delivery system, hesperadin and ICG assembled in PLGA-Se-Se-PEG-IMTP (HI@PSeP-IMTP), is designed to deliver hesperadin and ICG to the MIRI region for in vivo optical imaging tracking and to ameliorate MIRI.

View Article and Find Full Text PDF

Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!