Background: To assess whether commercial-grade activity monitors are appropriate for measuring step counts in older adults, it is essential to evaluate their measurement properties in this population.
Objective: This study aimed to evaluate test-retest reliability and criterion validity of step counting in older adults with self-reported intact and limited mobility from 6 commercial-grade activity monitors: Fitbit Charge, Fitbit One, Garmin vívofit 2, Jawbone UP2, Misfit Shine, and New-Lifestyles NL-1000.
Methods: For test-retest reliability, participants completed two 100-step overground walks at a usual pace while wearing all monitors. We tested the effects of the activity monitor and mobility status on the absolute difference in step count error (%) and computed the standard error of measurement (SEM) between repeat trials. To assess criterion validity, participants completed two 400-meter overground walks at a usual pace while wearing all monitors. The first walk was continuous; the second walk incorporated interruptions to mimic the conditions of daily walking. Criterion step counts were from the researcher tally count. We estimated the effects of the activity monitor, mobility status, and walk interruptions on step count error (%). We also generated Bland-Altman plots and conducted equivalence tests.
Results: A total of 36 individuals participated (n=20 intact mobility and n=16 limited mobility; 19/36, 53% female) with a mean age of 71.4 (SD 4.7) years and BMI of 29.4 (SD 5.9) kg/m. Considering test-retest reliability, there was an effect of the activity monitor (P<.001). The Fitbit One (1.0%, 95% CI 0.6% to 1.3%), the New-Lifestyles NL-1000 (2.6%, 95% CI 1.3% to 3.9%), and the Garmin vívofit 2 (6.0%, 95 CI 3.2% to 8.8%) had the smallest mean absolute differences in step count errors. The SEM values ranged from 1.0% (Fitbit One) to 23.5% (Jawbone UP2). Regarding criterion validity, all monitors undercounted the steps. Step count error was affected by the activity monitor (P<.001) and walk interruptions (P=.02). Three monitors had small mean step count errors: Misfit Shine (-1.3%, 95% CI -19.5% to 16.8%), Fitbit One (-2.1%, 95% CI -6.1% to 2.0%), and New-Lifestyles NL-1000 (-4.3%, 95 CI -18.9% to 10.3%). Mean step count error was larger during interrupted walking than continuous walking (-5.5% vs -3.6%; P=.02). Bland-Altman plots illustrated nonsystematic bias and small limits of agreement for Fitbit One and Jawbone UP2. Mean step count error lay within an equivalence bound of ±5% for Fitbit One (P<.001) and Misfit Shine (P=.001).
Conclusions: Test-retest reliability and criterion validity of step counting varied across 6 consumer-grade activity monitors worn by older adults with self-reported intact and limited mobility. Walk interruptions increased the step count error for all monitors, whereas mobility status did not affect the step count error. The hip-worn Fitbit One was the only monitor with high test-retest reliability and criterion validity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463409 | PMC |
http://dx.doi.org/10.2196/16537 | DOI Listing |
Nat Commun
December 2024
Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.
Electron diffraction spectroscopy is a fundamental tool for investigating quasicrystal structures, which unveils the quasiperiodic long-range order. Nevertheless, it falls short in effectively distinguishing separate local isomorphism classes. This is a long outstanding problem.
View Article and Find Full Text PDFJ Neurol Phys Ther
December 2024
Department of Physical Therapy, Motor Control Laboratory (LADECOM), Centre of Healthy and Sport Sciences, University of Santa Catarina State, Florianópolis, Santa Catarina, Brazil.
Background And Purpose: Telerehabilitation represents an alternative for individuals who have difficulty accessing services to receive care. Therefore, telerehabilitation measures must be studied for their reliability and validity. This study evaluated the validity and reliability of the videoconference-based Berg Balance Scale assessment in stroke survivors.
View Article and Find Full Text PDFJ Neuroimaging
December 2024
Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.
Background And Purpose: In idiopathic normal pressure hydrocephalus (iNPH) patients, cerebrospinal fluid (CSF) flow is typically evaluated with a cardiac-gated two-dimensional (2D) phase-contrast (PC) MRI through the cerebral aqueduct. This approach is limited by the evaluation of a single location and does not account for respiration effects on flow. In this study, we quantified the cardiac and respiratory contributions to CSF movement at multiple intracranial locations using a real-time 2D PC-MRI and evaluated the diagnostic value of CSF dynamics biomarkers in classifying iNPH patients.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel.
Modelling the dynamics of biological processes is ubiquitous across the ecological and evolutionary disciplines. However, the increasing complexity of these models poses a challenge to the dissemination of model-derived results. Often only a small subset of model results are made available to the scientific community, with further exploration of the parameter space relying on local deployment of code supplied by the authors.
View Article and Find Full Text PDFBrief Bioinform
November 2024
The Department of Medical Oncology, Jilin Cancer Hospital, No. 1066, Jinhu Road, Changchun, 130012, China.
Somatic variants play a crucial role in the occurrence and progression of cancer. However, in the absence of matched normal controls, distinguishing between germline and somatic variants becomes challenging in tumor samples. The existing tumor-only genomic analysis methods either suffer from limited performance or insufficient interpretability due to an excess of features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!