The expanded microbiological evaluation of a series of rifastures, novel spiropiperidyl rifamycin derivatives, against clinically relevant ESKAPE bacteria has identified several analogs with promising in vitro bioactivities against antibiotic-resistant strains of Enterococcus faecium and Staphylococcus aureus. Thirteen of the rifastures displayed minimum inhibitory concentrations (MICs) below 1 µg/ml against the methicillin- and vancomycin-resistant forms of S. aureus and E. faecium (MRSA, VRSA, VRE). Aryl-substituted rifastures 1, 11, and 12 offered the greatest bioactivity, with MICs reaching ≤0.063 µg ml for these human pathogens. Further analysis indicates that diphenyl rifasture 1 had greater antibiofilm activity against S. aureus and lower cytotoxicity in mammalian HEK cells than rifabutin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7928017 | PMC |
http://dx.doi.org/10.1038/s41429-020-0346-x | DOI Listing |
J Antibiot (Tokyo)
December 2020
Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA.
The expanded microbiological evaluation of a series of rifastures, novel spiropiperidyl rifamycin derivatives, against clinically relevant ESKAPE bacteria has identified several analogs with promising in vitro bioactivities against antibiotic-resistant strains of Enterococcus faecium and Staphylococcus aureus. Thirteen of the rifastures displayed minimum inhibitory concentrations (MICs) below 1 µg/ml against the methicillin- and vancomycin-resistant forms of S. aureus and E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!