Klinefelter syndrome (KS) is the most common sex chromosome aneuploidy. A distinctive characteristic of KS is oligozoospermia. Despite multiple studies that have described the natural history of the degenerative process of germ cells in patients with KS, the molecular mechanisms that initiate this process are not well characterized. MicroRNA (miRNA)-mediated post-transcriptional control mechanisms have been increasingly recognized as important regulators of spermatogenesis; however, only a few studies have evaluated the role of miRNAs in the gonadal failure of these patients. Here, we describe a differential expression profile for the miRNAs in testicular tissue samples taken from KS patients. We analysed testicular tissue samples from 4 KS patients and 5 control patients (obstructive azoospermia) through next-generation sequencing, which can provide information about the mechanisms involved in the degeneration of germ cells. A distinctive differential expression profile was identified for 166 miRNAs in the KS patients: 66 were upregulated, and 100 were downregulated. An interactome analysis was performed for 7 of the upregulated and the 20 downregulated miRNAs. The results showed that the target genes are involved in the development, proliferation, and differentiation processes of spermatogenesis, which may explain their role in the development of infertility. This is the first report of a miRNA expression profile generated from testicular tissue samples of KS patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351945 | PMC |
http://dx.doi.org/10.1038/s41598-020-68294-7 | DOI Listing |
Background: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFBackground: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer's disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: SHIP1 is a phosphatidyl inositol phosphatase encoded by INPP5D, which has been identified as a risk gene for Alzheimer's disease (AD). SHIP1 is expressed in microglia, the resident macrophage in brain. It is a complex, multidomain protein that acts as a negative regulator downstream from TREM2.
View Article and Find Full Text PDFBackground: Early-onset Alzheimer's disease (EOAD) associated with amyloid precursor protein (APP) duplications or presenilin (PSEN) variants increases risk of seizures. Targeting epileptiform activity with antiseizure medicine (ASM) administration to AD patients may beneficially attenuate cognitive decline (Vossel et al, JAMA Neurology 2021). However, whether mechanistically distinct ASMs differentially suppress seizures in discrete EOAD models is understudied (Lehmann et al, Neurochem Res 2021).
View Article and Find Full Text PDFBackground: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!