Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
To detect substation faults for timely repair, this paper proposes a fault detection method that is based on the time series model and the statistical process control method to analyze the regulation and characteristics of the behavior in the switching process. As the first time, this paper proposes a fault detection model using SARIMA, statistical process control (SPC) methods, and 3σ criterion to analyze the characteristics in substation's switching process. The employed approaches are both very common tools in the statistics field, however, via effectively combining them with industrial process fault diagnosis, these common statistical tolls play excellent role to achieve rich technical contributions. Finally, for different fault samples, the proposed method improves the rate of detection by at least 9% (and up to 15%) than other methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351989 | PMC |
http://dx.doi.org/10.1038/s41598-020-67925-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!