The zebrafish has recently emerged as a model system for investigating the developmental roles of glucocorticoid signaling and the mechanisms underlying glucocorticoid-induced developmental programming. To assess the role of the Glucocorticoid Receptor (GR) in such programming, we used CRISPR-Cas9 to produce a new frameshift mutation, GR, which eliminates all potential in-frame initiation codons upstream of the DNA binding domain. Using RNA-seq to ask how this mutation affects the larval transcriptome under both normal conditions and with chronic cortisol treatment, we find that GR mediates most of the effects of the treatment, and paradoxically, that the transcriptome of cortisol-treated larvae is more like that of larvae lacking a GR than that of larvae with a GR, suggesting that the cortisol-treated larvae develop GR resistance. The one transcriptional regulator that was both underexpressed in GR larvae and consistently overexpressed in cortisol-treated larvae was klf9. We therefore used CRISPR-Cas9-mediated mutation of klf9 and RNA-seq to assess Klf9-dependent gene expression in both normal and cortisol-treated larvae. Our results indicate that Klf9 contributes significantly to the transcriptomic response to chronic cortisol exposure, mediating the upregulation of proinflammatory genes that we reported previously.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7351738 | PMC |
http://dx.doi.org/10.1038/s41598-020-68040-z | DOI Listing |
Sci Rep
July 2020
MDI Biological Laboratory, Salisbury Cove, ME, USA.
The zebrafish has recently emerged as a model system for investigating the developmental roles of glucocorticoid signaling and the mechanisms underlying glucocorticoid-induced developmental programming. To assess the role of the Glucocorticoid Receptor (GR) in such programming, we used CRISPR-Cas9 to produce a new frameshift mutation, GR, which eliminates all potential in-frame initiation codons upstream of the DNA binding domain. Using RNA-seq to ask how this mutation affects the larval transcriptome under both normal conditions and with chronic cortisol treatment, we find that GR mediates most of the effects of the treatment, and paradoxically, that the transcriptome of cortisol-treated larvae is more like that of larvae lacking a GR than that of larvae with a GR, suggesting that the cortisol-treated larvae develop GR resistance.
View Article and Find Full Text PDFBiol Open
August 2016
MDI Biological Laboratory, Kathryn W. Davis Center for Regenerative Biology and Medicine, Salisbury Cove, ME, 04672, USA
Chronic early-life stress increases adult susceptibility to numerous health problems linked to chronic inflammation. One way that this may occur is via glucocorticoid-induced developmental programming. To gain insight into such programming we treated zebrafish embryos with cortisol and examined the effects on both larvae and adults.
View Article and Find Full Text PDFDis Aquat Organ
December 2009
Department of Fisheries and Wildlife, U.S. Geological Survey, USA.
Pseudoloma neurophilia (Microsporidia) is a common disease of zebrafish Danio rerio, including those used as research models. We conducted a study comprised of 4 separate experiments to determine the effects of husbandry stress on preexisting and experimental P. neurophilia infections and the subsequent effects on survival, infection onset and intensity, fish growth, and reproduction.
View Article and Find Full Text PDFPLoS One
August 2009
Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan.
Background: Gonadal fate in many reptiles, fish, and amphibians is modulated by the temperature experienced during a critical period early in life (temperature-dependent sex determination; TSD). Several molecular processes involved in TSD have been described but how the animals "sense" environmental temperature remains unknown. We examined whether the stress-related hormone cortisol mediates between temperature and sex differentiation of pejerrey, a gonochoristic teleost fish with marked TSD, and the possibility that it involves glucocorticoid receptor- and/or steroid biosynthesis-modulation.
View Article and Find Full Text PDFPhysiol Biochem Zool
October 2000
Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, Republic of China.
Effects of exogenous cortisol on drinking rate and water content in developing larvae of tilapia (Oreochromis mossambicus) were examined. Both freshwater- and seawater-adapted larvae showed increases in drinking rates with development. Drinking rates of seawater-adapted larvae were about four- to ninefold higher than those of freshwater-adapted larvae from day 2 to day 5 after hatching.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!