Tumor-associated macrophages (TAM) are regulators of extracellular matrix (ECM) remodeling and metastatic progression, the main cause of cancer-associated death. We found that disabled homolog 2 mitogen-responsive phosphoprotein (DAB2) is highly expressed in tumor-infiltrating TAMs and that its genetic ablation significantly impairs lung metastasis formation. DAB2-expressing TAMs, mainly localized along the tumor-invasive front, participate in integrin recycling, ECM remodeling, and directional migration in a tridimensional matrix. DAB2 macrophages escort the invasive dissemination of cancer cells by a mechanosensing pathway requiring the transcription factor YAP. In human lobular breast and gastric carcinomas, DAB2 TAMs correlated with a poor clinical outcome, identifying DAB2 as potential prognostic biomarker for stratification of patients with cancer. DAB2 is therefore central for the prometastatic activity of TAMs. SIGNIFICANCE: DAB2 expression in macrophages is essential for metastasis formation but not primary tumor growth. Mechanosensing cues, activating the complex YAP-TAZ, regulate DAB2 in macrophages, which in turn controls integrin recycling and ECM remodeling in 3-D tissue matrix. The presence of DAB2 TAMs in patients with cancer correlates with worse prognosis..

Download full-text PDF

Source
http://dx.doi.org/10.1158/2159-8290.CD-20-0036DOI Listing

Publication Analysis

Top Keywords

ecm remodeling
12
disabled homolog
8
prometastatic activity
8
tumor-associated macrophages
8
dab2
8
metastasis formation
8
integrin recycling
8
recycling ecm
8
dab2 macrophages
8
dab2 tams
8

Similar Publications

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Fabrication and applications of biofunctional collagen biomaterials in tissue engineering.

Int J Biol Macromol

January 2025

Polymer Lab, Chemistry Department, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Darul Ridzuan, Malaysia. Electronic address:

Collagen is extensively used in tissue engineering for various organ tissue regeneration due to the main component of human organ extracellular matrix (ECM) and their inherent nature bioactivity. Collagen various types naturally exist in different organ ECMs. Collagen fabricated with natural ECM mimics architecture, composition and mechanical properties for various organ tissue regeneration.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Protocol for the Generation and 3D Culture of Fluorescently Labeled Multicellular Spheroids.

Methods Mol Biol

January 2025

Department of Internal Medicine II, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany.

Spheroid culture systems have been extensively used to model the three-dimensional (3D) behavior of cells in vitro. Traditionally, spheroids consist of a single cell type, limiting their ability to fully recapitulate the complex inter-cellular interactions observed in vivo. Here we describe a protocol for generating cocultured spheroids composed of two distinct cell types, embedded within a 3D extracellular matrix (ECM) to better study cellular interactions.

View Article and Find Full Text PDF

The Microenvironment in DCIS and Its Role in Disease Progression.

Adv Exp Med Biol

January 2025

Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.

Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!