In this work, we present for the first time a laser-based dual gas sensor utilizing a silica-based Antiresonant Hollow-Core Fiber (ARHCF) operating in the Near- and Mid-Infrared spectral region. A 1-m-long fiber with an 84-µm diameter air-core was implemented as a low-volume absorption cell in a sensor configuration utilizing the simple and well-known Wavelength Modulation Spectroscopy (WMS) method. The fiber was filled with a mixture of methane (CH) and carbon dioxide (CO), and a simultaneous detection of both gases was demonstrated targeting their transitions at 3.334 µm and 1.574 µm, respectively. Due to excellent guidance properties of the fiber and low background noise, the proposed sensor reached a detection limit down to 24 parts-per-billion by volume for CH and 144 parts-per-million by volume for CO. The obtained results confirm the suitability of ARHCF for efficient use in gas sensing applications for over a broad spectral range. Thanks to the demonstrated low loss, such fibers with lengths of over one meter can be used for increasing the laser-gas molecules interaction path, substituting bulk optics-based multipass cells, while delivering required flexibility, compactness, reliability and enhancement in the sensor's sensitivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412241PMC
http://dx.doi.org/10.3390/s20143813DOI Listing

Publication Analysis

Top Keywords

antiresonant hollow-core
8
dual gas
8
gas sensor
8
methane carbon
8
carbon dioxide
8
near- mid-infrared
8
hollow-core fiber-based
4
fiber-based dual
4
sensor
4
sensor detection
4

Similar Publications

A Novel Hollow Core Antiresonant Fiber-Based Biosensor for Blood Component Detection in the THz Regime.

Biomed Phys Eng Express

January 2025

Electronics and Communication Engineering, SRM Institute of Science and Technology (Deemed to be University), Tech Park, SRM Nagar, Kattankulathur, Kattankulathur, Tamilnadu, 603203, INDIA.

This article proposes a novel biosensor based on a five-semi-circular cladding tube hollow core antiresonant fiber (HC-ARF) with a frequency range of 0.5-2.8 THz, using Zeonex as the background material.

View Article and Find Full Text PDF

This study presents an innovative methane gas sensor design based on anti-resonant hollow-core fiber (AR-HCF) technology, optimized for high-precision detection at 3.3[Formula: see text]. Our numerical analysis explores the geometric optimization of the AR-HCF's structural parameters, incorporating real-world component specifications.

View Article and Find Full Text PDF

Design of a Nested Hollow-Core Anti-Resonant Fiber Sensor for Simultaneous Measurement of Temperature and Strain.

Sensors (Basel)

December 2024

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China.

A highly sensitive sensor, which can detect the temperature and strain simultaneously, is proposed using a hollow-core anti-resonant fiber with composite nested tubes. The sensing fiber contains two kinds of nested tubes, and two different sensing mechanisms, the resonance coupling effect and the intermodal interference, are realized in the same section of a hollow-core anti-resonant fiber fully filled with ethanol. Five conjoined nested anti-resonant tubes are introduced to suppress the confinement loss of the higher-order mode LP.

View Article and Find Full Text PDF

We have developed an effective one-step extrusion method to prepare a nodeless chalcogenide hollow-core anti-resonance fiber, characterized by excellent symmetry and less requirements for drawing pressure in achieving the desired wall thickness. The resulting fiber exhibits excellent uniformity, with an ultra-large effective mode area of 21970 µm and a low overlap factor of  = 0.03%.

View Article and Find Full Text PDF

In large-area quantum networks based on optical fibers, photons are the fundamental carriers of information as so-called flying qubits. They may also serve as the interconnect between different components of a hybrid architecture, which might comprise atomic and solid-state platforms operating at visible or near-infrared wavelengths, as well as optical links in the telecom band. Quantum frequency conversion is the pathway to change the color of a single photon while preserving its quantum state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!