Optimisation of Sporosori Purification and Protein Extraction Techniques for the Biotrophic Protozoan Plant Pathogen .

Molecules

Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, Tasmania 7008, Australia.

Published: July 2020

is a soil-borne plant pathogen responsible for the economically significant root and powdery scab diseases of potato. However, the obligate biotrophic nature of has made the detailed study of the pathogen problematic. Here, we first compared the benefits of sporosori partial purification utilizing Ludox gradient centrifugation. We then undertook optimization efforts for protein isolation comparing the use of a urea buffer followed by single-pot solid-phase-enhanced sample preparation (SP3) and a sodium dodecyl sulphate (SDS) buffer followed by suspension-trapping (S-Trap). Label-free, quantitative proteomics was then used to evaluate the efficiency of the sporosori purification and the protein preparation methods. The purification protocol produced a highly purified suspension of sporosori without affecting the viability of the spores. The results indicated that the use of a combination of SDS and S-Trap for sample clean-up and digestion obtained a significantly higher number of identified proteins compared to using urea and SP3, with 218 and 652 proteins identified using the SP3 and S-Trap methods, respectively. The analysis of proteins by mass spectrometry showed that the number of identified proteins increased by approximately 40% after the purification of spores by Ludox. These results suggested a potential use of the described spore purification and protein preparation methods for the proteomics study of obligate biotrophic pathogens such as .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397026PMC
http://dx.doi.org/10.3390/molecules25143109DOI Listing

Publication Analysis

Top Keywords

purification protein
12
sporosori purification
8
plant pathogen
8
obligate biotrophic
8
protein preparation
8
preparation methods
8
number identified
8
identified proteins
8
purification
6
optimisation sporosori
4

Similar Publications

Protocol for semisynthesis of histone H4 with site-specific modifications using irreversible sortase-mediated ligation.

STAR Protoc

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China. Electronic address:

Post-translational modifications (PTMs) of histone H4 play significant roles in the regulation of chromatin status. Here, we present a protocol for semisynthesis of histone H4 by sortase-mediated ligation (SML). We describe steps for solid-phase peptide synthesis of H4R40C(1-42), recombinant expression and purification of H4(41-102), expression and purification of eSrt(2A-9), and preparation of acrylamidine.

View Article and Find Full Text PDF

Background: Because the process is cost-effective, microbial pectinase is used in juice clearing. The isolation, immobilization, and characterization of pectinase from Aspergillus nidulans (Eidam) G. Winter (AUMC No.

View Article and Find Full Text PDF

Isolation and characterization of ɸEcM-vB1 bacteriophage targeting multidrug-resistant Escherichia coli.

BMC Res Notes

January 2025

Department of Microbiology and Immunology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.

Objectives: The aim of this study is to screen for, isolate and characterize a bacteriophage designated ɸEcM-vB1 with confirmed lytic activity against multidrug-resistant (MDR) E. coli. Methods done in this research are bacteriophage isolation, purification, titer determination, bacteriophage morphology, host range determination, bacteriophage latent period and burst size determination, genomic analysis by restriction enzymes, and bacteriophage total protein content determination.

View Article and Find Full Text PDF

Functionalization of polymer nanoparticles (NPs) with targeting peptides is of interest for drug delivery applications to enhance tumor accumulation and penetration. Herein, we evaluated the feasibility of two different methods for the attachment of a tumor-penetrating peptide LinTT1 (AKRGARSTA) to poly(ethylene glycol)-block-poly(ε-caprolactone) (PCL-PEG) NPs: (1) "post-conjugation" onto pre-formed nanoparticles, and (2) "pre-conjugation", the synthesis and purification of peptide-polymer conjugates and subsequent nanoprecipitation of the conjugates diluted with non-functionalized polymers. Conjugation of the labelled peptide via maleimide-thiol chemistry was verified by gel permeation chromatography (GPC) and fluorescence measurements.

View Article and Find Full Text PDF

Yeast sex-hormone whole-cell biosensors are analytical tools characterized by long-time storage and low production cost. We engineered compact β-estradiol biosensors in S. cerevisiae cells by leveraging short (20-nt long) operators bound by the fusion protein LexA-ER-VP64-where ER is the human estrogen receptor and VP64 a strong viral activation domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!