The WRKY transcription factors (TFs) are involved in aluminum (Al) stress and jasmonic acid (JA)-regulated resistance responses. WRKYs act as regulators of Al-activated malate transporter (ALMT) proteins (anion channels) by directly binding to their promoters and altering malate efflux, thereby regulating Al ion toxicity in plant roots. JA enhances Al-induced root growth inhibition in Arabidopsis. However, the relationship between WRKY and ALMT genes and their involvement in JA-mediated root growth inhibition during Al stress in tomato remain unknown. Here, we demonstrate a similar phenomenon that JA enhances Al-induced root growth inhibition in tomato (Solanum lycopersicum). By analyzing RNA-seq data and tissue-specific expression data from public databases, we selected 17 WRKY and 6 ALMT family genes to identify the genes participated in this process. The promoters of many of the selected genes contained MeJA responsive element, G-box (target site of MYC2, a core TF of JA signaling), and W-box (target site for WRKY). Quantitative real-time PCR was performed to evaluate the expression levels of selected WRKY and ALMT genes under AlCl and Methyl jasmonate (MeJA) treatment. SlMYC2-VIGS seedlings and jasmonic acid-insensitive1 (jai1) mutant were also employed to analyze the expression patterns of selected genes. We find that SlALMT3 is responsible for the crosstalk regulatory mechanism between Al and JA in root growth inhibition, and 6 SlWRKYs may act as the upstream regulators of SlALMT3 in this crosstalk response. This study is initial and informative in exploring the crosstalk regulatory mechanism between JA and Al in tomato.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2020.06.026DOI Listing

Publication Analysis

Top Keywords

root growth
20
growth inhibition
16
wrky almt
12
enhances al-induced
8
al-induced root
8
almt genes
8
selected wrky
8
selected genes
8
target site
8
crosstalk regulatory
8

Similar Publications

Brain drain in Emergency Medicine in Lebanon, building locally and exporting globally.

BMC Med Educ

January 2025

Department of Emergency Medicine, American University of Beirut, P.O.Box 11-0236, Riad El-Solh, Beirut, 1107 2020, Lebanon.

Objective: Despite the growth of Emergency Medicine (EM) globally, shortages of EM-trained physicians persist in many countries, disproportionately affecting lower middle/low-income countries (LMIC/LIC). This study examines the career paths of graduates of an Emergency Medicine residency-training program established in Lebanon with the aim of building local capacity in EM.

Design And Patients: This descriptive study utilizes secondary data sourced from an alumni database that includes nine cohorts of graduates from an Emergency Medicine residency program at the American University of Beirut Medical Center in Lebanon.

View Article and Find Full Text PDF

An efficient in vitro propagation protocol has been established for a valuable medicinal plant, Salix tetrasperma using mature nodal explants. The investigation aimed to observe the influence of various combinations and concentrations of cytokinins (mT, BA, and Kn) and auxins (NAA, IAA, and IBA) on regeneration potential using the Murashige and Skoog (MS) medium. Among individual cytokinin treatments, 5.

View Article and Find Full Text PDF

Functional and genomic analyses of plant growth promoting traits in Priestia aryabhattai and Paenibacillus sp. isolates from tomato rhizosphere.

Sci Rep

January 2025

Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB, UNVM-CONICET), Villa María, Argentina.

This study investigated plant growth-promoting (PGP) mechanisms in Priestia aryabhattai VMYP6 and Paenibacillus sp. VMY10, isolated from tomato roots. Their genomes were initially assessed in silico through various approaches, and these observations were then compared with results obtained in vitro and in vivo.

View Article and Find Full Text PDF

Newly isolated bacterium and arbuscular mycorrhizal fungus effectively reduce the root cadmium concentration and increase the root biomass of Ophiopogon japonicus.

J Hazard Mater

January 2025

School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang 621010, China. Electronic address:

Soil cadmium (Cd) contamination is one of the major challenges in food production. This has led to above-maximum threshold accumulation of Cd in O. japonicus roots.

View Article and Find Full Text PDF

Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system.

Plant Physiol

January 2025

State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China, P. R.

Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!