Triggered release from responsive drug reservoirs activated by remote stimuli is desired in a range of fields. Critical bottlenecks are cost-efficient formulation avenues applicable for industrial scale-up, viable triggers and immediate release rather than continuous release upon activation. UV-sensitive microcapsules based on self-immolating polymers in combination with thin shells and morphological weak spots should allow for immediate triggered release. Polyphthalaldehyde-based microcapsules were prepared using several variations of the internal phase separation route. In addition, a fluorescence microscopy method was developed to study both the microcapsule morphology and the triggered release in-situ. The microcapsule formation was driven by the surface activity of the stabilizer, effectively lowering the high polymer-water interfacial tension, which is in sharp contrast to conventional encapsulation systems. Contrary to previous findings, a core-shell morphology was obtained via slow emulsion-to-suspension transformation. Rapid transformation captured intermediate inverted core-shell structures. The capsules were highly sensitive to both acid- and UV-mediated triggers, leading to an unzipping and rupturing of the shell that released the core content. Poly(methacrylic acid)-stabilized microcapsules displayed immediate UV-triggered release provided by their stimuli-sensitive blueberry morphology. Both capsules in aqueous and dry environment started to lose their core content after less than one minute of UV light exposure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.06.024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!