Aluminium batteries constitute a safe and sustainable high-energy-density electrochemical energy-storage solution. Viable Al-ion batteries require suitable electrode materials that can readily intercalate high-charge Al ions. Here, we investigate the Al intercalation chemistry of anatase TiO and how chemical modifications influence the accommodation of Al ions. We use fluoride- and hydroxide-doping to generate high concentrations of titanium vacancies. The coexistence of these hetero-anions and titanium vacancies leads to a complex insertion mechanism, attributed to three distinct types of host sites: native interstitial sites, single vacancy sites, and paired vacancy sites. We demonstrate that Al induces a strong local distortion within the modified TiO structure, which affects the insertion properties of the neighbouring host sites. Overall, specific structural features induced by the intercalation of highly polarising Al ions should be considered when designing new electrode materials for polyvalent batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202007983DOI Listing

Publication Analysis

Top Keywords

electrode materials
8
titanium vacancies
8
host sites
8
vacancy sites
8
sites
5
atomic insights
4
insights aluminium-ion
4
aluminium-ion insertion
4
insertion defective
4
defective anatase
4

Similar Publications

Pre-intercalated Sodium Ions Enhance Sodium Storage of MoS Anode by Mitigating Structural Dissociation.

Nano Lett

January 2025

School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, International Joint Laboratory of Low-carbon Chemical Engineering of Ministry of Education, Tianjin University, Tianjin 300072, P. R. China.

Molybdenum disulfide (MoS) is a promising anode for sodium-ion batteries (SIBs) due to its high theoretical capacity and layered structure. However, a poor reversible conversion reaction and a low initial Coulombic efficiency (ICE) limit its practical application. This study systematically investigated the potential of pre-intercalated sodium ions molybdenum disulfide (Na-MoS) as an anode material for SIBs.

View Article and Find Full Text PDF

Iron-doped nickel oxyhydroxides, Ni(Fe)OH, are among the most promising oxygen evolution reaction (OER) electrocatalysts in alkaline environments. Although iron (Fe) significantly enhances the catalytic activity, there is still no clear consensus on whether Fe directly participates in the reaction or merely acts as a promoter. To elucidate the Fe's role, we performed X-ray spectroscopy studies supported by DFT on Ni(Fe)OH electrocatalysts.

View Article and Find Full Text PDF

Smart textiles provide a significant technological advancement, but their development must balance traditional textile properties with electronic features. To address this challenge, this study introduces a flexible, electrically conductive composite material that can be fabricated using a continuous bi-component extrusion process, making it ideal for sensor electrodes. The primary aim was to create a composite for the filament's core, combining multi-walled carbon nanotubes (MWCNTs), polypropylene (PP), and thermoplastic elastomer (TPE), optimised for conductivity and flexibility.

View Article and Find Full Text PDF

Laser reduction of graphene oxide (GO) is a promising approach for achieving flexible, robust, and electrically conductive graphene/polymer composites. Resulting composite materials show significant technological potential for energy storage, sensing, and bioelectronics. However, in the case of insulating polymers, the properties of electrodes show severely limited performance.

View Article and Find Full Text PDF

This study investigates the electrochemical degradation mechanisms of nickel-salen (NiSalen) polymers, with a focus on improving the material's stability in supercapacitor applications. We analyzed the effects of steric hindrance near the nickel center by incorporating different bulky substituents into NiSalen complexes, aiming to mitigate water-induced degradation. Electrochemical performance was assessed using cyclic voltammetry, operando conductance, and impedance measurements, while X-ray photoelectron spectroscopy (XPS) provided insights into molecular degradation pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!