Understanding hormonal crosstalk in Arabidopsis root development via emulation and history matching.

Stat Appl Genet Mol Biol

School of Biological and Biomedical Sciences, Durham University, Durham, UK.

Published: July 2020

A major challenge in plant developmental biology is to understand how plant growth is coordinated by interacting hormones and genes. To meet this challenge, it is important to not only use experimental data, but also formulate a mathematical model. For the mathematical model to best describe the true biological system, it is necessary to understand the parameter space of the model, along with the links between the model, the parameter space and experimental observations. We develop sequential history matching methodology, using Bayesian emulation, to gain substantial insight into biological model parameter spaces. This is achieved by finding sets of acceptable parameters in accordance with successive sets of physical observations. These methods are then applied to a complex hormonal crosstalk model for Arabidopsis root growth. In this application, we demonstrate how an initial set of 22 observed trends reduce the volume of the set of acceptable inputs to a proportion of 6.1 × 10-7 of the original space. Additional sets of biologically relevant experimental data, each of size 5, reduce the size of this space by a further three and two orders of magnitude respectively. Hence, we provide insight into the constraints placed upon the model structure by, and the biological consequences of, measuring subsets of observations.

Download full-text PDF

Source
http://dx.doi.org/10.1515/sagmb-2018-0053DOI Listing

Publication Analysis

Top Keywords

hormonal crosstalk
8
arabidopsis root
8
history matching
8
experimental data
8
mathematical model
8
parameter space
8
model parameter
8
model
7
understanding hormonal
4
crosstalk arabidopsis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!