Ribosome hibernation is a prominent cellular strategy to modulate protein synthesis during starvation and the stationary phase of bacterial cell growth. Translational suppression involves the formation of either factor-bound inactive 70S monomers or dimeric 100S hibernating ribosomal complexes, the biological significance of which is poorly understood. Here, we demonstrate that the Escherichia coli 70S ribosome associated with stationary phase factors hibernation promoting factor or protein Y or ribosome-associated inhibitor A and the 100S ribosome isolated from both Gram-negative and Gram-positive bacteria are resistant to unfolded protein-mediated subunit dissociation and subsequent degradation by cellular ribonucleases. Considering that the increase in cellular stress is accompanied by accumulation of unfolded proteins, such resistance of hibernating ribosomes towards dissociation might contribute to their maintenance during the stationary phase. Analysis of existing structures provided clues on the mechanism of inhibition of the unfolded protein-mediated disassembly in case of hibernating factor-bound ribosome. Further, the factor-bound 70S and 100S ribosomes can suppress protein aggregation and assist in protein folding. The chaperoning activity of these ribosomes is the first evidence of a potential biological activity of the hibernating ribosome that might be crucial for cell survival under stress conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/febs.15479 | DOI Listing |
J Cell Commun Signal
June 2022
Herbal Research Laboratory, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India.
Endoplasmic reticulum (ER) dysfunction plays a prominent role in the pathophysiology of diabetic nephropathy (DN). This study aimed to investigate the novel role of Naringenin (a flavanone mainly found in citrus fruits) in modulating ER stress in hyperglycemic NRK 52E cells and STZ/nicotinamide induced diabetes in Wistar rats. The results demonstrated that Naringenin supplementation downregulated the expression of ER stress marker proteins, including p-PERK, p-eIF2α, XBP1s, ATF4 and CHOP during hyperglycemic renal toxicity in vitro and in vivo.
View Article and Find Full Text PDFFEBS J
February 2021
Department of Biotechnology, St. Xavier's College, Kolkata, India.
Ribosome hibernation is a prominent cellular strategy to modulate protein synthesis during starvation and the stationary phase of bacterial cell growth. Translational suppression involves the formation of either factor-bound inactive 70S monomers or dimeric 100S hibernating ribosomal complexes, the biological significance of which is poorly understood. Here, we demonstrate that the Escherichia coli 70S ribosome associated with stationary phase factors hibernation promoting factor or protein Y or ribosome-associated inhibitor A and the 100S ribosome isolated from both Gram-negative and Gram-positive bacteria are resistant to unfolded protein-mediated subunit dissociation and subsequent degradation by cellular ribonucleases.
View Article and Find Full Text PDFNanoscale
October 2019
CEMES, CNRS UPR 8011, 29 rue J. Marvig, B.P. 94347, F-31055 Toulouse, France.
Natural biocomposites are shaped by proteins that have evolved to interact with inorganic materials. Protein directed evolution methods which mimic Darwinian evolution have proven highly successful to generate improved enzymes or therapeutic antibodies but have rarely been used to evolve protein-material interactions. Indeed, most reported studies have focused on short peptides and a wide range of oligopeptides with chemical binding affinity for inorganic materials have been uncovered by phage display methods.
View Article and Find Full Text PDFInt J Mol Sci
November 2018
Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA.
ClpC1 hexamers couple the energy of ATP hydrolysis to unfold and, subsequently, translocate specific protein substrates into the associated ClpP protease. Substrate recognition by ATPases associated with various cellular activities (AAA+) proteases is driven by the ATPase component, which selectively determines protein substrates to be degraded. The specificity of these unfoldases for protein substrates is often controlled by an adaptor protein with examples that include MecA regulation of ClpC or ClpS-mediated control of ClpA.
View Article and Find Full Text PDFCold Spring Harb Perspect Biol
April 2019
Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom.
The physiological consequences of the unfolded protein response (UPR) are mediated by changes in gene expression. Underlying them are rapid processes involving preexisting components. We review recent insights gained into the regulation of the endoplasmic reticulum (ER) Hsp70 chaperone BiP, whose incorporation into inactive oligomers and reversible AMPylation and de-AMPylation present a first line of response to fluctuating levels of unfolded proteins.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!