A lack of understanding of the structure-property relationship of the polylactic acid (PLA)-based polymer composite system makes it a challenge to manufacture products with optimized mechanical performance by precisely regulating the microscopic structure and morphology. Herein, we chose the PLA/polyethylene oxide (PEO) blend as a model to investigate the structural reason for the enhanced ductility and toughness of this kind of material. We have demonstrated that a considerable amount of the PLA mesophases exist in the melt quenched films that display high ductility and toughness, in contrast to the PLA crystals in their counterparts of slowly cooled films that are dominated by brittle fracture. The mesophase formed by melt quenching is attributed to a moderate acceleration of PLA chain mobility due to the plasticizing effect of the flexible PEO. In situ experiments have revealed the further formation of oriented mesophases induced by tensile deformation, which presents a high consistency between the content increase and the tensile stress intensification. We illustrate that the mesophases directly develop into a microfibrillar morphology to transmit the external stress and prevent crack propagation under deformation. This work emphasizes the essential role of the PLA mesophase in acquiring the enhanced ductility and toughness of the PLA/PEO composite films, which may be generalized to other similar PLA-based polymer composite materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0sm00671h | DOI Listing |
Materials (Basel)
January 2025
Department of Metals and Corrosion Engineering, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Praha 6-Dejvice, 166 28 Prague, Czech Republic.
Maraging steel is a high-performance material valued for its exceptional properties, making it ideal for demanding applications such as aerospace, tooling, and automotive industries, where high strength, toughness, and precision are required. These steels can be prepared by powder metallurgy techniques, which offer new processing possibilities. This paper introduces novel thermal powder pre-treatment and its impact on the final mechanical properties.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Research and Testing Institute Pilsen, 30100 Plzen, Czech Republic.
In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.
View Article and Find Full Text PDFAdv Mater
January 2025
College of Textiles, Donghua University, Shanghai, 201620, China.
Fiber-based artificial muscles are soft actuators used to mimic the movement of human muscles. However, using high modulus oxide ceramics to fabricate artificial muscles with high energy and power is a challenge as they are prone to brittle fracture during torsion. Here, a ceramic metallization strategy is reported that solves the problem of low torsion and low ductility of alumina (AlO) ceramics by chemical plating a thin copper layer on alumina filaments.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore, 117575, Singapore.
The modification of thermoplastic polymers is frequently impeded by the inherent contradiction between their toughness and strength. In this study, an effective strategy to significantly improve the mechanical properties of ductile polymers by simply adding a complimentary rigid polymer is introduced. This work uses a semi-crystalline polymer aliphatic polyketone (POK) as the matrix material and a small quantity of polymethyl methacrylate (PMMA) as the rigid polymer, through establishing molecular chain entanglements at the interface to produce POK/PMMA blends with exceptional mechanical property.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China. Electronic address:
Polylactide (PLA) is inherently brittle and lacks ductility, which greatly restricts its range of applications. In order to address these issues, we blended PLA with biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P(3HB-co-4HB)), and introduced epoxidized soybean oil (ESBO) as a reactive modifier to enhance the properties of the PLA/P(3HB-co-4HB) blends. Furthermore, we used theoretical calculations, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), Soxhlet extraction, differential scanning calorimetry (DSC), polarising optical microscopy (POM), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and mechanical testing to investigate the compatibility, crystallization behavior, microstructure, thermal and mechanical properties of the PLA/P(3HB-co-4HB)/ESBO blends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!