A metal- and oxidant-free photoinduced strategy for thioxo sulfur-selective trifluoromethylation of β-ketodithioesters at room temperature is reported. Excellent /-stereoselectivity has been achieved with cheap and viable Langlois' reagent (CFSONa, sodium triflinate) in the presence of eosin Y, which acts as a hydrogen atom transfer (HAT) catalyst. The reaction proceeds disulfide intermediate disulfanediylbis(3-(alkylthio)-1-phenylprop-2-en-1-one) (a dimer of β-ketodithioester) followed by complementing proton-coupled electron transfer-mediated reverse HAT cycle of eosin Y. This operationally simple and efficient protocol allows direct access to triflinated α-oxoketene dithioacetals in good to excellent yields bearing diverse synthetically useful functional groups of different electronic and steric nature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.0c01355DOI Listing

Publication Analysis

Top Keywords

trifluoromethylation β-ketodithioesters
8
langlois' reagent
8
visible-light photocatalysis
4
photocatalysis eosin
4
eosin hat
4
hat complementing
4
complementing ms-cpet
4
ms-cpet strategy
4
strategy trifluoromethylation
4
β-ketodithioesters langlois'
4

Similar Publications

Adding colour to ion-selective membranes.

Talanta

January 2025

Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland. Electronic address:

An idea of using ion-exchanger salt containing optically active cations to prepare ion-selective membranes is proposed. Although the presence of an ion-exchanger in the composition of neutral ionophore based sensors is necessary, the choice of available salts for cation-selective sensors preparation, is usually limited to sodium or potassium compounds. In this work we propose application of an alternative salt, using a cation optically active both in absorption and emission mode as a mobile one.

View Article and Find Full Text PDF

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Trifluoroacetic acid (TFA) is a ubiquitous environmental contaminant; however, its sources are poorly constrained. One understudied source is from the photochemical reactions of aromatic compounds containing -CF moieties (aryl-CF) including many pharmaceuticals and agrochemicals. Here, we studied the aqueous photochemistry of 4-(trifluoromethyl)phenol (4-TFMP), a known transformation product of the pharmaceutical fluoxetine.

View Article and Find Full Text PDF

Anaerobic 1,2-/1,3-Hydroxytrifluoromethylation of Unactivated Alkenes Enabled by Photoexcited Nitroarenes.

Org Lett

January 2025

State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, Shandong 266237, P. R. China.

An anaerobic 1,2-/1,3-hydroxytrifluoromethylation of unactivated alkenes is described. This reaction proceeds in mild and environmentally friendly conditions without photocatalyst and metal catalyst, allowing access to a wide range of β- and γ-trifluoromethyl alcohols. Preliminary mechanistic investigations indicate that the accomplishment of this protocol relies on the dual functionality of the photoexcited triplet nitroarenes, which serve as the oxygen atom source and enable the single-electron transfer (SET) process with CFSONa.

View Article and Find Full Text PDF

Charge-transfer complexation of coordination cages for enhanced photochromism and photocatalysis.

Nat Commun

January 2025

State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.

Intensified host-guest electronic interplay within stable metal-organic cages (MOCs) presents great opportunities for applications in stimuli response and photocatalysis. Zr-MOCs represent a type of robust discrete hosts for such a design, but their host-guest chemistry in solution is hampered by the limited solubility. Here, by using pyridinium-derived cationic ligands with tetrakis(3,5-bis(trifluoromethyl)phenyl)borate (BAr) as solubilizing counteranions, we report the preparation of soluble Zr-MOCs of different shapes (1-4) that are otherwise inaccessible through a conventional method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!