Bioelectricity is an essential characteristic of a biological system that has played an important role in medical diagnosis particularly in cancer liquid biopsy. However, its biophysical origin and measurements have presented great challenges in experimental methodologies. For instance, in dynamic cell processes, bioelectricity cannot be accurately determined as a static electrical potential via electrophoresis. Cancer cells fundamentally differ from normal cells by having a much higher rate of glycolysis resulting in net negative charges on cell surfaces. The most recent investigations on cancer cell surface charge that is the direct bio-electrical manifestation of the "Warburg Effect," which can be directly monitored by specially designed nanoprobes, has been provided. The most up-to-date research results from charge-mediated cell targeting are reviewed. Correlations between the cell surface charge and cancer cell metabolism are established based on cell/probe electrostatic interactions. Bioelectricity is utilized not only as an analyte for investigation of the metabolic state of the cancer cells, but also applied in electrostatically and magnetically capturing of the circulating tumor cells from whole blood. Also reviewed is on the isolation of Candida albicans via bioelectricity-driven nanoparticle binding on fungus with surface charges.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adbi.201900101 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
It has been well accumulated that G-quadruplex (G4-DNA) has great anticancer relevance, and various heterocyclic moieties have been synthesized and examined as potent G4-DNA binders with promising anticancer activity. Here, we have synthesized a series of naphthalimide-triazole-coumarin conjugates by substituting various amines and further examine their anticancer activity against 60 human cancer cell lines at 10 μM. One and five dose concentration results reveal low values of MG-MID GI for compounds including (3.
View Article and Find Full Text PDFDNA Cell Biol
January 2025
Department of Anesthesiology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China.
Lung cancer represents a significant global health burden, with non-small cell lung cancer (NSCLC) being the most common subtype. The current standard of care for NSCLC has limited efficacy, highlighting the necessity for innovative treatment options. Lidocaine, traditionally recognized as a local anesthetic, has emerged as a compound with potential antitumor and anti-inflammatory capabilities.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
Objective: Oxidative stress prompts breast cancer cells to adapt by raising the lethal threshold and enhancing the antioxidant mechanism, thereby enabling survival and continuous proliferation that facilitates tumor progression. Nrf2 and 8-OHdG are indicative of oxidative stress activity and impact the progression of breast cancer. We aimed to analyze the expression of Nrf2 and 8-OHdG in various T stages of breast cancer in our hospital.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia.
Objective: Programmed cell death-1 (PD-1, encoded by PDCD1) regulatory network participates in glioblastoma multiforme development. However, such a network in trastuzumab-resistant human epidermal growth factor receptor 2-positive (HER2+) breast cancer remains to be determined. Accordingly, this study was aimed to explore the PD-1 regulatory network responsible for the resistance of breast cancer cells to trastuzumab through a bioinformatics approach.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research. Mustansiriyah University, Baghdad, Iraq.
Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.
Materials And Methods: This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!