Layered Double Hydroxides Are Promising Nanomaterials for Tissue Bioengineering Application.

Adv Biosyst

Lab. de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista - UNESP, Campus Botucatu, São Paulo, CEP 18618-970, Brazil.

Published: July 2019

Layered double hydroxides (LDHs) have emerged as promising nanomaterials for human health and although it has achieved some progress on this matter, their application within bioengineering is not fully addressed. This prompted to subject fibroblasts to two compositions of LDHs (Mg Al-Cl and Zn Al-Cl), considering an acute response. First, LDH particles are addressed by scanning electron microscopy, and no significant effect of the cell culture medium on the shape of LDHs particles is reported although it seems to adsorb some soluble proteins as proposed by energy-dispersive X-ray analysis. These LDHs release magnesium, zinc, and aluminum, but there is no cytotoxic or biocompatibility effects. The data show interference to fibroblast adhesion by driving the reorganization of actin-based cytoskeleton, preliminarily to cell cycle progression. Additionally, these molecular findings are validated by performing a functional wound-healing assay, which is accompanied by a dynamic extracellular matrix remodeling in response to the LDHs. Altogether, the results show that LDHs nanomaterials modulate cell adhesion, proliferation, and migration, delineating new advances on the biomaterial field applied in the context of soft tissue bioengineering, which must be explored in health disorders, such as wound healing in burn injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adbi.201800238DOI Listing

Publication Analysis

Top Keywords

layered double
8
double hydroxides
8
promising nanomaterials
8
tissue bioengineering
8
ldhs
6
hydroxides promising
4
nanomaterials tissue
4
bioengineering application
4
application layered
4
hydroxides ldhs
4

Similar Publications

Bacterial keratitis (BK) is a type of corneal inflammation resulting from bacterial infection in the eye. Although nanozymes have been explored as promising materials in corneal wound healing, currently available nanozymes lack sufficient catalytic activity and the ability to penetrate bacterial biofilms, limiting their efficacy against the treatment of BK. To remedy this, ZnFe layered double hydroxide (ZnFe-LDH) nanosheets are loaded with Cu single-atom nanozymes (Cu-SAzymes) and aminated dextran (Dex-NH), resulting in the formation of the nanozyme DT-ZnFe-LDH@Cu, which possesses peroxidase (POD)-, oxidase (OXD)-, and catalase (CAT)-like catalytic activities.

View Article and Find Full Text PDF

Two-dimensional inverse double sandwich CoB: strain-induced non-magnetic to ferromagnetic transition.

Phys Chem Chem Phys

January 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

A full-scale structural search was performed using density functional theory calculations and a universal structural prediction evolutionary algorithm. This produced a lowest energy two-dimensional (2D) CoB structure. The CoB-1 global minimum structure has unusual inverse double sandwich features.

View Article and Find Full Text PDF

Purpose: Eosinophilic esophagitis (EoE) is the most well-known eosinophilic gastrointestinal disorder (EGID) characterized by the presence of a high number eosinophils within the esophageal epithelium and the clinical signs. Biopsies of patients with suspected EoE may not show a high number of eosinophils, however the presence of granules may help with the diagnosis. This study aims to evaluate the presence of cell-free eosinophil granules in the esophageal tissue of patients with suspected and confirmed EoE to accelerate the diagnosis and treatment of patients with low eosinophil count.

View Article and Find Full Text PDF

Layered double hydroxides (LDHs), which resemble hydrotalcite, are a type of materials with cationic layers and exchangeable interlayer anions. They have drawn lots of curiosity as a high-temperature CO2 adsorbent because of its quick desorption/sorption kinetics and renewability. Due to its extensive divalent or trivalent cationic metals, high anion exchange property, memory effect, adjustable behavior, bio-friendliness, easy to prepare and relatively low cost, the LDHs-based materials are becoming increasingly popular for photocatalytic CO2 reduction reaction (CO2RR).

View Article and Find Full Text PDF

Polycalmagite Coating Enables Long-Term Alkaline Seawater Oxidation Over NiFe Layered Double Hydroxide.

Small

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China.

Renewable energy-powered seawater electrolysis is a green and attractive technique for producing high-purity hydrogen. However, severe chlorideions (Cl) and their derivatives tend to corrode anodic catalysts at ampere-level current densities and hinder the application of seawater-to-H systems. Herein, a polycalmagite (PCM)-coated NiFe layered double hydroxide is presented on Ni foam (NiFe LDH@PCM/NF) that exhibits exceptional stability in alkaline seawater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!