Background: Bioaccessibility of food allergens may be a key determinant of allergic reactions.
Objective: To develop a protocol allowing the detection of the major peanut allergen, Ara h 6, in the bloodstream following ingestion of low amounts of peanut and to compare Ara h 6 bioaccessibility by food matrix. We further assessed for differences in absorption in healthy versus peanut-allergic volunteers.
Methods: A blood pretreatment combining acidic shock and thermal treatment was developed. This protocol was then applied to blood samples collected from human volunteers (n = 6, healthy controls; n = 14, peanut-allergic patients) at various time-points following ingestion of increasing levels of peanut incurred in different food matrices (cookies, peanut butter and chocolate dessert). Immunodetection was performed using an in-house immunoassay.
Results: An original pretreatment protocol was optimized, resulting in irreversible dissociation of human antibodies-Ara h 6 immune complex, thus rendering Ara h 6 accessible for its immunodetection. Ara h 6 was detected in samples from all volunteers following ingestion of 300-1000 mg peanut protein, although variations in the kinetics of passage were observed between individuals and matrices. Interestingly, in peanut-allergic subjects, Ara h 6 could be detected following ingestion of lower doses and at higher concentrations than in non-allergic volunteers.
Conclusions And Clinical Relevance: The kinetics and intensity of Ara h 6 passage in bloodstream depend on both individual and food matrix. Peanut-allergic patients appear to demonstrate higher absorption rate, the clinical significance of which warrants further evaluation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cea.13706 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!