Divalent cations, mainly calcium and magnesium ions, are known to play a major role in the maintenance of chromosomes. The depletion of both ions using ethylenediaminetetraacetic acid (EDTA) results in a bent chromosome structure with extended arms and dispersed chromatin fibers. The importance of divalent cations for the maintenance of chromosome structure has been reported previously; nevertheless, previous studies were limited to qualitative data only. Straightening the bent image of the chromosome would provide quantitative data. Thus, this study aimed to evaluate the effects of cation depletion by the application of the Chromosome Image Analyzing System (CHIAS) to straighten bent chromosomes. Human HeLa chromosomes were treated with EDTA as a known chelating agent in order to investigate the importance of divalent cations on the maintenance of chromosome structure. Chromosomes were stained and directly observed with a fluorescence microscope. Images were then analyzed using CHIAS. The results revealed that EDTA-treated chromosomes showed longer arms than those without EDTA treatment, and most of them tended to bend-out. By straightening the image using CHIAS, the bent chromosomes were successfully straightened. The average lengths of the chromosomes treated with and without EDTA were 4.97 and 0.96 μm, respectively. These results signify the advantages of CHIAS for chromosome analysis and highlight the fundamental effects of cations on chromosome condensation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jemt.23533 | DOI Listing |
bioRxiv
December 2024
Department of Biology, Penn State University, University Park, PA 16802, USA.
Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes, Z-DNA, etc.
View Article and Find Full Text PDFWiad Lek
November 2024
DEPARTMENT OF PATHOLOGICAL ANALYSIS, SCIENCE COLLAGE, THI-QAR UNIVERSITY, THI-QAR, IRAQ.
J Biol Chem
September 2024
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA. Electronic address:
Y-chromosome-encoded master transcription factor SRY functions in the embryogenesis of therian mammals to initiate male development. Through interactions of its conserved high-mobility group box within a widened DNA minor groove, SRY and related Sox factors induce sharp bends at specific DNA target sites. Here, we present the crystal structure of the SRY high-mobility group domain bound to a DNA site containing consensus element 5'-ATTGTT.
View Article and Find Full Text PDFCurr Biol
August 2024
Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA. Electronic address:
Karyotypes, composed of chromosomes, must be accurately partitioned by the mitotic spindle for optimal cell health. However, it is unknown how underlying characteristics of karyotypes, such as chromosome number and size, govern the scaling of the mitotic spindle to ensure accurate chromosome segregation and cell proliferation. We utilize budding yeast strains engineered with fewer chromosomes, including just two "mega chromosomes," to study how spindle size and function are responsive to, and scaled by, karyotype.
View Article and Find Full Text PDFPlant J
August 2024
National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!