Mechanistic Insights into C(sp )-C(sp)N Reductive Elimination from Gold(III) Cyanide Complexes.

Angew Chem Int Ed Engl

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.

Published: October 2020

A new family of phosphine-ligated dicyanoarylgold(III) complexes has been prepared and their reactivity towards reductive elimination has been studied in detail. Both, a highly positive entropy of activation and a primary C KIE suggest a late concerted transition state while Hammett analysis and DFT calculations indicate that the process is asynchronous. As a result, a distinct mechanism involving an asynchronous concerted reductive elimination for the overall C(sp )-C(sp)N bond forming reaction is characterized herein, for the first time, complementing previous studies reported for C(sp )-C(sp ), C(sp )-C(sp ), and C(sp )-C(sp ) bond formation processes taking place on gold(III) species.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202005731DOI Listing

Publication Analysis

Top Keywords

reductive elimination
12
csp -csp
12
csp -cspn
8
-csp csp
8
csp
5
mechanistic insights
4
insights csp
4
-cspn reductive
4
elimination goldiii
4
goldiii cyanide
4

Similar Publications

Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.

View Article and Find Full Text PDF

A solvent dependent C(sp3)-CF3 bond-forming reductive elimination from neutral four-coordinate Cu(III) complexes [(L)Cu(CF3)2(CH2CO2tBu)] (L = pyridine or its derivatives) is described. Reactions in less polar solvent ClCH2CH2Cl proceed via a concerted bond breaking/bond forming process along with the reorientation of the ligand, while reaction in polar solvent DMF occurs via a rate limiting ligand-dissociation, followed by C(sp3)-CF3 reductive elimination from the resulting three-coordinate intermediate. These mechanistic proposals are supported by kinetic studies that included ligand and temperature effects, as well as DFT calculations.

View Article and Find Full Text PDF

Mapping the molecular mechanism of zinc catalyzed Suzuki-Miyaura coupling reaction: a computational study.

Org Biomol Chem

January 2025

Department of Chemistry, CMS College Kottayam (Autonomous), Kottayam, Kerala, 686001, India.

The Suzuki-Miyaura Coupling (SMC) reaction is a powerful method for forming carbon-carbon bonds in organic synthesis. Recent advancements in SMC reactions have introduced first-row transition metal catalysts, with zinc garnering significant interest due to its cost-effective and eco-friendly nature. Despite progress in experimental protocols, the mechanistic details of zinc-catalyzed SMC reactions are limited.

View Article and Find Full Text PDF

Exploring nickel-catalyzed organochalcogen synthesis cross-coupling of benzonitrile and alkyl chalcogenols with computational tools.

Org Biomol Chem

January 2025

Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.

The preparation of organochalcogens has increased in recent times due to their promising biological activity properties. This work studies the reaction mechanism of a nickel(0)-catalyzed cross-coupling between benzonitrile and propanethiol to produce new C-S bonds by computational means. The proposed mechanism follows the classical oxidative addition/transmetalation/reductive elimination cross-coupling sequence, involving an unusual oxidative addition of a Ph-CN bond onto the active species.

View Article and Find Full Text PDF

Ultrafast enzyme-responsive hydrogel for real-time assessment and treatment optimization in infected wounds.

J Nanobiotechnology

January 2025

Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.

Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!