Purpose: Certain viral infectious diseases cause systemic damage and the liver is an important organ affected directly by the virus and/or the hosts' response to the virus. Medical imaging indicates that the liver damage is heterogenous, and therefore, quantification of these changes requires analysis of the entire organ. Delineating the liver in preclinical imaging studies is a time-consuming and difficult task that would benefit from automated liver segmentation.
Methods: A nonhuman primate atlas-based liver segmentation method was developed to support quantitative image analysis of preclinical research. A set of 82 computed tomography (CT) scans of nonhuman primates with associated manual contours delineating the liver was generated from normal and abnormal livers. The proposed technique uses rigid and deformable registrations, a majority vote algorithm, and image post-processing operations to automate the liver segmentation process. This technique was evaluated using Dice similarity, Hausdorff distance measures, and Bland-Altman plots.
Results: Automated segmentation results compare favorably with manual contouring, achieving a median Dice score of 0.91. Limits of agreement from Bland-Altman plots indicate that liver changes of 3 Hounsfield units (CT) and 0.4 SUVmean (positron emission tomography) are detectable using our automated method of segmentation, which are substantially less than changes observed in the host response to these viral infectious diseases.
Conclusion: The proposed atlas-based liver segmentation technique is generalizable to various sizes and species of nonhuman primates and facilitates preclinical infectious disease research studies. While the image analysis software used is commercially available and facilities with funding can access the software to perform similar nonhuman primate liver quantitative analyses, the approach can be implemented in open-source frameworks as there is nothing proprietary about these methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7502527 | PMC |
http://dx.doi.org/10.1007/s11548-020-02225-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!