SIVA-1 plays a critical role in the induction of apoptosis in a number of different cell lines and participates in the mechanism of cisplatin (DDP)-mediated antitumor effects. However, the involvement of SIVA-1 in cisplatin resistance in gastric carcinoma has not been revealed. To explore the effect of SIVA-1 on DDP resistance, a recombinant pGV358-GFP-SIVA-1 lentiviral vector was constructed and transfected into human cisplatin-resistant MKN45/DDP gastric cancer cells. Subsequently, stable SIVA-1 overexpression was established in MKN45/DDP cells, which resulted in increased DDP sensitivity in MKN45/DDP cells in vitro. Flow cytometry demonstrated that SIVA-1 overexpression increased the percentage of apoptotic cells compared to that in the control. The colony formation assay clearly revealed that cell growth and proliferation were significantly suppressed following SIVA-1 overexpression. In addition, overexpression of SIVA-1 inhibited the migratory and invasive potential of MKN45/DDP cells in vitro. Western blot analysis indicated that SIVA-1 increased the expression levels of p53, p73, and p14ARF, whereas it reduced Bcl-2, MDM2, and Bcl-xL expression. In short, SIVA-1 upregulated the protein expression of p53, p73, and p14ARF and decreased that of Bcl-2, MDM2, and Bcl-xL in vitro and subsequently reversed cisplatin resistance in gastric cancer cells, suggesting that SIVA-1 serves as a valuable potential target for attenuating chemotherapy resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-020-00929-y | DOI Listing |
Cancer Drug Resist
December 2024
Precision Health Program, Michigan State University, East Lansing, MI 48824, USA.
Ovarian cancer is one of the deadliest gynecologic cancers affecting the female reproductive tract. This is largely attributed to frequent recurrence and development of resistance to the platinum-based drugs cisplatin and carboplatin. One of the major contributing factors to increased cancer progression and resistance to chemotherapy is the tumor microenvironment (TME).
View Article and Find Full Text PDFCancer Drug Resist
December 2024
Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava 84505, Slovak Republic.
Mutations in the mitochondrial (mt) genome contribute to metabolic dysfunction and their accumulation relates to disease progression and resistance development in cancer cells. This study explores the mutational status of the mt genome of cisplatin-resistant -sensitive testicular germ cell tumor (TGCT) cells and explores its association with their respiration parameters, expression of respiratory genes, and preferences for metabolic pathways to reveal new markers of therapy resistance in TGCTs. Using Illumina sequencing with Twist Enrichment Panel, the mutations of mt genomes of sensitive 2102EP, H12.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland. Electronic address:
Background: Mammalian metallothioneins (MTs) play a crucial role in maintaining Zn(II) and Cu(I) homeostasis, as well as regulating the cellular redox potential. They are involved in cancer resistance to cisplatin-related drugs and the sequestration of toxic metal ions. To investigate their participation in specific physiological and pathological processes, it is imperative to develop an analytical method for measuring changes in protein concentration both in vitro and in vivo.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
National Key Laboratory of Bioreactors, School of Biological Engineering, East China University of Science and Technology, Shanghai 200237, China. *Corresponding author, E-mail:
Nucleosides Nucleotides Nucleic Acids
January 2025
Division of Hematology, Department of Internal Medicine, Medical Faculty, Tekirdağ Namık Kemal University, Tekirdağ, Turkey.
Breast cancer is the most common malignancy that affects women. MicroRNAs (miRNAs) play an essential role in cancer therapy and regulate many biological processes such as cisplatin resistance. The study's objective was to determine whether miR-182 dysregulation was the cause of cisplatin resistance in TNBC cell line MDA-MB-231.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!