Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hypochlorite is an important active oxygen species formed in living organisms, and rapid and highly sensitive detection of trace hypochlorite is of great significance for understanding the mechanism of diseases caused by abnormal hypochlorite concentrations at an early stage. Although aggregation-induced emission (AIE) probes are highly important for analyte de-tection in living organisms, there is a lack of AIE probes for hypochlorite detection. In this study, two AIE probes based on benzothiazole derivatives (BTD-1 and BTD-2) were designed and synthesized. Both probes exhibited good AIE charac-teristics and allowed different visual detection for hypochlorite. Additionally, the two probes could be used to detect endogenous hypochlorite in mitochondria and were successfully applied for in vivo hypochlorite imaging in zebrafish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0tb01496f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!