Thermal quenching seriously restricts the practical application of phosphors, particularly under high temperature and long-term working conditions. Here, we demonstrate that the as-obtained series of solid solutions of Ca2-xYxAl2Si1-xAlxO7:Tb3+ (x = 0-1, Ca2Al2SiO7 → CaYAl3O7) phosphors exhibit an adjustable optical performance, where CaYAl3O7:Tb3+ exhibits a greatly improved thermal stability with a shortened bond distance of the related polyhedron compared with Ca2Al2SiO7:Tb3+. The shrunken bond distance strengthens the pressure of the local structure and suppresses the non-radiative transition effectively, contributing to the prevention of the thermal degradation. The formed phosphor with excellent structural stability could be effectively incorporated with various lanthanide ions (Eu3+, Tb3+, Sm3+, Dy3+, and Pr3+) to address a pleochroism output.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp00612bDOI Listing

Publication Analysis

Top Keywords

thermal stability
8
local structure
8
bond distance
8
achieving high
4
thermal
4
high thermal
4
stability rare-earth
4
rare-earth ions
4
ions single
4
single matrix
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!