Structural basis for differentiation between two classes of thiolase: Degradative vs biosynthetic thiolase.

J Struct Biol X

Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.

Published: January 2020

Thiolases are a well characterized family of enzymes with two distinct categories: degradative, β-ketoadipyl-CoA thiolases and biosynthetic, acetoacetyl-CoA thiolases. Both classes share an identical catalytic triad but catalyze reactions in opposite directions. Moreover, it is established that in contrast to the biosynthetic thiolases the degradative thiolases can accept substrates with broad chain lengths. Hitherto, no residue or structural pattern has been recognized that might help to discern the two thiolases, here we exploit, a tetrameric degradative thiolase from KT2440 annotated as PcaF, as a model system to understand features which distinguishes the two classes using structural studies and bioinformatics analyses. Degradative thiolases have different active site architecture when compared to biosynthetic thiolases, demonstrating the dissimilar chemical nature of the active site architecture. Both thiolases deploy different "anchoring residues" to tether the large Coenzyme A (CoA) or CoA derivatives. Interestingly, the H356 of the catalytic triad in PcaF is directly involved in tethering the CoA/CoA derivatives into the active site and we were able to trap a gridlocked thiolase structure of the H356A mutant, where the CoA was found to be covalently linked to the catalytic cysteine residue, inhibiting the overall reaction. Further, X-ray structures with two long chain CoA derivatives, hexanal-CoA and octanal-CoA helped in delineating the long tunnel of 235 Å surface area in PcaF and led to identification of a unique covering loop exclusive to degradative thiolases that plays an active role in determining the tunnel length and the nature of the binding substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7337054PMC
http://dx.doi.org/10.1016/j.yjsbx.2019.100018DOI Listing

Publication Analysis

Top Keywords

degradative thiolases
12
active site
12
thiolases
10
catalytic triad
8
biosynthetic thiolases
8
site architecture
8
coa derivatives
8
degradative
6
structural basis
4
basis differentiation
4

Similar Publications

Cytosolic thiouridylase is a conserved cytoplasmic tRNA thiolase composed of two different subunits, CTU1 and CTU2. CTU2 serves as a scaffold protein, while CTU1 catalyzes the 2-thiolation at the 34th wobble uridine of the anticodon loop. tRNAGlnUUG, tRNAGluUUC, and tRNALysUUU are the tRNA substrates that are modified with a thiol group at the C2 positions (s2) by CTU1, and also with a methoxycarbonylmethyl group at the C5 positions (mcm5) by Elongator and ALKBH8.

View Article and Find Full Text PDF

An alternative route for β-hydroxybutyrate metabolism supports fatty acid synthesis in cancer cells.

bioRxiv

November 2024

Department of Metabolism and Nutritional Programming, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI 49503.

Cancer cells are exposed to diverse metabolites in the tumor microenvironment that are used to support the synthesis of nucleotides, amino acids, and lipids needed for rapid cell proliferation. Recent work has shown that ketone bodies such as β-hydroxybutyrate (β-OHB), which are elevated in circulation under fasting conditions or low glycemic diets, can serve as an alternative fuel that is metabolized in the mitochondria to provide acetyl-CoA for the tricarboxylic acid (TCA) cycle in some tumors. Here, we discover a non-canonical route for β-OHB metabolism, in which β-OHB can bypass the TCA cycle to generate cytosolic acetyl-CoA for fatty acid synthesis in cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • * Trimetazidine (TMZ) is a drug that helps maintain energy metabolism and appears to reduce the severity of PH and strain on the right side of the heart in rats that have been induced with this condition.
  • * The study found that TMZ decreases long-chain fatty acids and downregulates certain fatty acid transporter genes in the lungs, suggesting that it impacts the energy metabolism related to PH progression.
View Article and Find Full Text PDF

ACAT1 Induces the Differentiation of Glioblastoma Cells by Rewiring Choline Metabolism.

Int J Biol Sci

November 2024

Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Abnormal differentiation of cells is a hallmark of malignancy. Induction of cancer-cell differentiation is emerging as a novel therapeutic strategy with low toxicity in hematological malignances, but whether such treatment can be used in solid tumors is not known. Here, we uncovered a novel function of acetyl coenzyme A acetyltransferase (ACAT1) in regulating the differentiation of glioblastoma (GBM) cells.

View Article and Find Full Text PDF

Aging is the major risk factor for Alzheimer's disease (AD). In the aged brain, myelin debris accumulates and is cleared by microglia. Phagocytosed myelin debris increases neutral lipid droplet content in microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!