Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Concrete structures expand and contract in response to temperature changes which can result in structural strain and cracking. However, there is a limited amount of robust field data on hybrid concrete floor structures. Shortage of such data impacts on our understanding of how concrete structures respond to thermal effects and ultimately the overall design of concrete structures. Thus, a comprehensive structural and environmental monitoring strategy was implemented by the authors during the construction of an educational building. Sensors were embedded in the precast and in situ components of a hybrid concrete lattice girder flat slab so that the thermal response of the floor during the manufacture, construction and operational stages could be investigated. Many aspects of the thermal behaviour of the floor during the construction phase were monitored using the embedded sensors. The early-age thermal effects during curing and the impact of the variation of ambient temperature (daily and seasonal) and solar radiation on the behaviour of concrete floor is explored in the paper. Values for restraint factors and the in situ restrained coefficient of thermal expansion of concrete are calculated using the data from the embedded sensors. Numerical modelling of the thermal behaviour of the hybrid concrete floor was undertaken and validated using the real-time field measurements. The data presented and analysed in this paper can be used to improve the understanding and modelling of the thermal behaviour of a hybrid concrete floor. This will assist with improved design of sustainable buildings as it allows the environmental performance of the floor to be optimised with respect to controlling the internal environment, thermal mass and energy efficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328017 | PMC |
http://dx.doi.org/10.1186/s40069-018-0287-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!