One-step route to tricyclic fused 1,2,3,4-tetrahydroisoquinoline systems via the Castagnoli-Cushman protocol.

Beilstein J Org Chem

Sofia University "St. Kliment Ohridski", Faculty of Chemistry and Pharmacy, 1, James Bourchier ave., 1164 Sofia, Bulgaria.

Published: June 2020

The Castagnoli-Cushman reaction of 3,4-dihydroisoquinolines with glutaric anhydride, its oxygen and sulfur analogues was investigated as a one-step approach to the benzo[]quinolizidine system and its heterocyclic analogs. An extension towards the pyrrolo[2,1-]isoquinoline system was achieved with the use of succinic anhydride. The results are evidence of an unexplored method for the access of the aforementioned tricyclic annelated systems incorporating a bridgehead nitrogen atom. The structures and relative configurations of the new compounds were established by means of 1D and 2D NMR techniques. The reactions between 1-methyldihydroisoquinoline and glutaric, diglycolic and succinic anhydrides yielded unexpected isoquinoline derivatives containing an exocyclic double bond. The compounds prepared bear the potential to become building blocks for future synthetic bioactive molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7323625PMC
http://dx.doi.org/10.3762/bjoc.16.121DOI Listing

Publication Analysis

Top Keywords

one-step route
4
route tricyclic
4
tricyclic fused
4
fused 1234-tetrahydroisoquinoline
4
1234-tetrahydroisoquinoline systems
4
systems castagnoli-cushman
4
castagnoli-cushman protocol
4
protocol castagnoli-cushman
4
castagnoli-cushman reaction
4
reaction 34-dihydroisoquinolines
4

Similar Publications

The [4+2] Diels-Alder cycloaddition reaction between 2,5-DMF (1) and ethylene derivatives (2a-h) activated by electron-withdrawing groups has been studied at the density functional theory levels using a panoply of tools to unravel the reaction mechanisms. From the analysis of the reactivity indices, 2a-h behave as electrophiles while 1 as nucleophile, and the activation of the double bond of ethylene increases its electrophilicity, which is accompanied by an enhancement of the polarity of the reaction. The activation Gibbs free energy decreases linearly as a function of this increase of polarity, as estimated by the electrophilicity difference between the reactants.

View Article and Find Full Text PDF

Microorganisms serve as biological factories for the synthesis of nanomaterials such as CdS quantum dots. Based on the uniqueness of sp., a one-step route was explored to directly convert cadmium waste into CdS QDs using these bacteria.

View Article and Find Full Text PDF

Efficient Synthesis of ,-Muconic Acid by Catechol Oxidation of Ozone in the Presence of a Base.

Molecules

January 2025

Graduate School of Science, Technology and Innovation, Kobe University, 1-1, Rokkodai, Kobe 657-0013, Hyogo, Japan.

Muconic acid, a crucial precursor in synthesizing materials like PET bottles and nylon, is pivotal for the anticipated growth in the textiles and plastics industries. This study presents a novel chemical synthesis route for ,-muconic acid (ccMA) using catechol. Biochemical methods face scale-up challenges due to microorganism sensitivity and complex extraction processes, while chemical methods involve environmentally harmful substances and have low yields.

View Article and Find Full Text PDF

Facile Synthesis of Oxazolidinones as Potential Antibacterial Agents.

ChemistryOpen

January 2025

Discipline of Pharmaceutical Sciences, Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, 4000, South Africa.

An efficient microwave-assisted synthesis route for novel oxazolidinone analogues has been developed. The general synthesis of these compounds began with an L-proline-mediated three-component Mannich reaction between commercially available 3-fluoro-4-morpholinoaniline, aqueous formaldehyde and α-hydroxyacetone. This was followed by a one-step cyclisation to form the core structure of oxazolidinone antibiotics which was subsequently derivatized.

View Article and Find Full Text PDF

The catching-by-polymerization (CBP) oligodeoxynucleotide (oligo or ODN) purification method has been demonstrated suitable for large-scale, parallel, and long oligo purification. The authenticity of the oligos has been verified via DNA sequencing, and gene construction and expression. A remaining obstacle to the practical utility of the CBP method is affordable polymerizable tagging phosphoramidites (PTPs) that are needed for the method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!