The growth of microorganisms on surfaces and interfaces as a biofilm is very common and plays important role in various areas such as material science, biomedicine, or waste treatment among others. Due to their inhomogeneous structure and the variance in the microorganism consortium, the analysis of biofilms represents a significant challenge. An online fluorescence sensor was developed that is able to measure the most important biological fluorophores (proteins, nicotinamide adenine dinucleotide, and flavin) in a noninvasive manner in biofilms, e.g. in bioelectrochemical applications. The sensor gives the opportunity to continuously draw conclusions on the metabolic state of the biofilm. The developed sensor has a diameter of 1 mm at the sensor tip and can be moved on and into the biofilm surface. In the first experiment, the measuring range of the sensor and the long-term stability could be determined and the system applicability was confirmed. In addition, measurements in biofilm-like structures could be performed. The formation of a wastewater-based biofilm was monitored using the developed sensor, demonstrating the functionality of the sensor in a proof-of-principle experiment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336156PMC
http://dx.doi.org/10.1002/elsc.201900140DOI Listing

Publication Analysis

Top Keywords

sensor
8
fluorescence sensor
8
developed sensor
8
development characterization
4
characterization fiber
4
fiber optical
4
optical fluorescence
4
sensor online
4
online monitoring
4
monitoring biofilms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!