The present study investigated growth, biochemical, physiological, yield and proteomic changes in 3 wheat varieties exposed to elevated CO (515 ppm) in a background of high ambient ozone in field. Ethylenediurea (EDU) was used as antiozonant. Average ozone concentration was 59 ppb and was sufficient enough to exert phytotoxic effects. Elevated carbon dioxide (eCO) and EDU application individually or in combination negated the adverse effects of ozone by modulating antioxidants and antioxidative enzymes. Differential leaf proteomics revealed that at vegetative stage major changes in protein abundance were due to EDU treatment (47, 52 and 41 proteins in PBW-343, LOK1 and HD-2967, respectively). Combined treatment of eCO and EDU was more responsible for changes in 37 proteins during flowering stage of PBW-343 and LOK1. Functional categorization revealed more than 60% differentially abundant protein collectively belonging to carbon metabolism, protein synthesis assembly and degradation and photosynthesis. At both the growth stages, LOK1 was more responsive to eCO and combined treatment (eCO + EDU). HD-2967 was more positively responsive to EDU and combined treatment. eCO in combination of EDU protected these varieties against high ambient O.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326879 | PMC |
http://dx.doi.org/10.1007/s12298-020-00828-9 | DOI Listing |
J Plant Physiol
January 2025
Department of Ecology, Faculty of Sciences, University of Málaga, Málaga, Spain.
Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
ISGlobal, Barcelona, Spain.
Importance: Climate change can adversely affect mental health, but the association of ambient temperature with psychiatric symptoms remains poorly understood.
Objective: To assess the association of ambient temperature exposure with internalizing, externalizing, and attention problems in adolescents from 2 population-based birth cohorts in Europe.
Design, Setting, And Participants: This cohort study analyzed data from the Dutch Generation R Study and the Spanish INMA (Infancia y Medio Ambiente) Project.
Environ Sci Pollut Res Int
January 2025
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India.
The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.
View Article and Find Full Text PDFRSC Adv
January 2025
State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology Dalian 116024 P. R. China
The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.
View Article and Find Full Text PDFRSC Adv
January 2025
Faculty of Materials Science and Technology, University of Science Ho Chi Minh City Vietnam
Infrared (IR) photodetectors play an important role in many fields such as industry, medicine, security, Achieving high response and maintaining stability in the device performance while reducing materials cost are required for the practical use of optical sensors. This study presents the development of a low-cost but high-performance IR photodetector based on a hybridization of up-conversion microparticles of NaYF:Tm,Yb (UCMPs) and reduced graphene oxide material (RGO). In this combination, UCMPs play the role of absorbing photons from 980 nm excitation light, generating electron-hole pairs, which are useful for sensing applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!