AI Article Synopsis

  • The study examined the effects of elevated carbon dioxide (CO2) and the antiozonant Ethylenediurea (EDU) on three wheat varieties exposed to high ozone levels, revealing that these treatments helped mitigate ozone's harmful impacts.
  • The presence of elevated ozone negatively affected wheat growth, but the combination of elevated CO2 and EDU improved antioxidant activities and protein expression, crucial for enhancing resilience against ozone stress.
  • Significant changes in protein abundance were noted during different growth stages, with specific wheat varieties responding better to the treatments, indicating variations in adaptability and stress response.

Article Abstract

The present study investigated growth, biochemical, physiological, yield and proteomic changes in 3 wheat varieties exposed to elevated CO (515 ppm) in a background of high ambient ozone in field. Ethylenediurea (EDU) was used as antiozonant. Average ozone concentration was 59 ppb and was sufficient enough to exert phytotoxic effects. Elevated carbon dioxide (eCO) and EDU application individually or in combination negated the adverse effects of ozone by modulating antioxidants and antioxidative enzymes. Differential leaf proteomics revealed that at vegetative stage major changes in protein abundance were due to EDU treatment (47, 52 and 41 proteins in PBW-343, LOK1 and HD-2967, respectively). Combined treatment of eCO and EDU was more responsible for changes in 37 proteins during flowering stage of PBW-343 and LOK1. Functional categorization revealed more than 60% differentially abundant protein collectively belonging to carbon metabolism, protein synthesis assembly and degradation and photosynthesis. At both the growth stages, LOK1 was more responsive to eCO and combined treatment (eCO + EDU). HD-2967 was more positively responsive to EDU and combined treatment. eCO in combination of EDU protected these varieties against high ambient O.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326879PMC
http://dx.doi.org/10.1007/s12298-020-00828-9DOI Listing

Publication Analysis

Top Keywords

high ambient
12
combined treatment
12
wheat varieties
8
varieties exposed
8
exposed elevated
8
ambient ozone
8
pbw-343 lok1
8
treatment eco
8
growth physiological
4
physiological proteomic
4

Similar Publications

Cold-temperate and Arctic hard bottom coastal ecosystems are dominated by kelp forests, which have a high biomass production and provide important ecosystem services, but are subject to change due to ocean warming. However, the photophysiological response to increasing temperature of ecologically relevant species, such as Laminaria digitata, might depend on the local thermal environment where the population has developed. Therefore, the effects of temperature on growth rate, biochemical composition, maximum quantum yield, photosynthetic quotient and carbon budget of young cultured sporophytes of Laminaria digitata from the Arctic at Spitsbergen (SPT; cultured at 4, 10 and 16 °C) and from the cold-temperate North Sea island of Helgoland (HLG; cultured at 10, 16 and 22 °C) were comparatively analyzed.

View Article and Find Full Text PDF

Importance: Climate change can adversely affect mental health, but the association of ambient temperature with psychiatric symptoms remains poorly understood.

Objective: To assess the association of ambient temperature exposure with internalizing, externalizing, and attention problems in adolescents from 2 population-based birth cohorts in Europe.

Design, Setting, And Participants: This cohort study analyzed data from the Dutch Generation R Study and the Spanish INMA (Infancia y Medio Ambiente) Project.

View Article and Find Full Text PDF

The atmospheric dicarboxylic acids (DCAs) have a significant impact on the climate and indirectly affect human health, making them important organic substances. PM bound DCAs were analysed for Jorhat, India, 2019. In addition to the temporal variability, seasonal variation throughout the year and the impact of varying meteorological factors on DCAs concentration have also been studied.

View Article and Find Full Text PDF

The ability to convert moisture signals into electrical signals through contactless control underpins a wide range of applications, including health monitoring, disaster warning, and energy harvesting. Despite its potential, the effective utilization of low-grade energy remains challenging, as it often requires complex device architectures that limit scalability and integration, particularly in wearable technologies. Here, we present a soft, flexible moisture-electric converter made from cellulose nanocrystals and polyvinyl alcohol composite films, designed for a novel touchless interactive platform.

View Article and Find Full Text PDF

Infrared (IR) photodetectors play an important role in many fields such as industry, medicine, security, Achieving high response and maintaining stability in the device performance while reducing materials cost are required for the practical use of optical sensors. This study presents the development of a low-cost but high-performance IR photodetector based on a hybridization of up-conversion microparticles of NaYF:Tm,Yb (UCMPs) and reduced graphene oxide material (RGO). In this combination, UCMPs play the role of absorbing photons from 980 nm excitation light, generating electron-hole pairs, which are useful for sensing applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!