The endoplasmic reticulum (ER) immunoglobulin binding proteins (BiPs) are molecular chaperones involved in normal protein maturation and refolding malformed proteins through the unfolded protein response (UPR). Plant BiPs belong to a multi-gene family contributing to development, immunity, and responses to environmental stresses. This study identified three BiP homologs in the Solanum tuberosum (potato) genome using phylogenetic, amino acid sequence, 3-D protein modeling, and gene structure analysis. These analyses revealed that StBiP1 and StBiP2 grouped with AtBiP2, whereas StBiP3 grouped with AtBiP3. While the protein sequences and folding structures are highly similar, these StBiPs are distinguishable by their expression patterns in different tissues and in response to environmental stressors such as treatment with heat, chemicals, or virus elicitors of UPR. Ab initio promoter analysis revealed that potato and Arabidopsis BiP1 and BiP2 promoters were highly enriched with cis-regulatory elements (CREs) linked to developmental processes, whereas BiP3 promoters were enriched with stress related CREs. The frequency and linear distribution of these CREs produced two phylogenetic branches that further resolve the groups identified through gene phylogeny and exon/intron phase analysis. These data reveal that the CRE architecture of BiP promoters potentially define their spatio-temporal expression patterns under developmental and stress related cues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347581PMC
http://dx.doi.org/10.1038/s41598-020-68407-2DOI Listing

Publication Analysis

Top Keywords

solanum tuberosum
8
architecture bip
8
expression patterns
8
genome-wide identification
4
identification characterization
4
characterization solanum
4
bip
4
tuberosum bip
4
bip genes
4
genes reveal
4

Similar Publications

Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.

View Article and Find Full Text PDF

First Report of Causing Rot of Potato in China.

Plant Dis

January 2025

Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences,, Chengdu, China;

Potato ( L.) is the third largest food crop globally following rice and wheat, which is consumed by more than 1 billion people worldwide (FAO 2024). In October 2022, tuber rot of potato (cv.

View Article and Find Full Text PDF

Plant glucanases, including potato glucanase, are pivotal in biological processes such as cell growth, development, and defense against pathogens. These enzymes hold substantial promises in biotechnological applications, especially genetic engineering for enhancing crop disease resistance and stress tolerance. In this study, from Solanum tuberosum, glycosyl hydrolases family 17 (GH-17) β-1,3-glucanase (Stglu) was cloned, expressed, characterized and its antifungal activity was evaluated.

View Article and Find Full Text PDF

Water-scarce areas are threatened by climate crisis and, thus, there is an urgent need for optimizing water resources management. Remote sensing has been widely used for calculating the evapotranspiration over large areas, which is an essential variable for calculating the actual irrigation needs of crops. The main objective of this work is to design an approach to optimize the irrigation needs for specific crops.

View Article and Find Full Text PDF

Potato late blight leaf detection in complex environments.

Sci Rep

December 2024

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650504, China.

Potato late blight is a common disease affecting crops worldwide. To help detect this disease in complex environments, an improved YOLOv5 algorithm is proposed. First, ShuffleNetV2 is used as the backbone network to reduce the number of parameters and computational load, making the model more lightweight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!