Our density functional theory calculations show that tiny-gap semiconductor SiGe monolayer is a quantum valley Hall insulator with a spontaneous electric polarization and, under a small biaxial strain, undergoes a topological phase transition between the states with opposite valley Chern numbers. The topological phase transition entails abrupt inversion of the in-plane electric polarization corresponding to inversion of the sublattice pseudospin polarization, while the out-of-plane electric polarization shows a linear response to the biaxial strain as well as to the perpendicular electric field regardless of the phase transition. Thus, the quantum valley Hall state entails in-plane ferroelectricity corresponding to a sublattice pseudospin ferromagnetism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347862 | PMC |
http://dx.doi.org/10.1038/s41598-020-68228-3 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.
Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
Materials exhibiting both metallic and semiconducting states, including two-dimensional transition metal dichalcogenides (TMDs), have numerous applications. We therefore investigate the effects of axial and shear strains on the phase energetics of pristine and striped TMDs using density functional theory and classical molecular dynamics simulations. We demonstrate that control of the phase distribution can be achieved by the integration of strain engineering and Kirigami techniques.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics, Wesleyan University, Middletown, Connecticut 06459, USA.
Phase change materials such as Ge2Sb2Te5 (GST) are ideal candidates for next-generation, non-volatile, solid-state memory due to the ability to retain binary data in the amorphous and crystal phases and rapidly transition between these phases to write/erase information. Thus, there is wide interest in using molecular modeling to study GST. Recently, a Gaussian Approximation Potential (GAP) was trained for GST to reproduce Density Functional Theory (DFT) energies and forces at a fraction of the computational cost [Zhou et al.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFSmall
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
Solar desalination shows promise in tackling freshwater shortages, but challenges arise from the trade-off between water transportation and heat supply, affecting evaporators' efficiency and salt resistance. Additionally, intermittent nature of solar radiation significantly diminishes overall evaporative performance. This study presents dual-gradient heating solar evaporator for efficient desalination.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!