Goal-directed navigation can be based on world-centered (allocentric) or body-centered (egocentric) representations of the environment, mediated by a wide network of interconnected brain regions, including hippocampus, striatum and prefrontal cortex. The relative contribution of these regions to navigation from novel or familiar routes, that demand a different degree of flexibility in the use of the stored spatial representations, has not been completely explored. To address this issue, we trained mice to find a reward relying on allocentric or egocentric information, in a modified version of the cross-maze task. Then we used Zif268 expression to map brain activation when well-trained mice were required to find the goal from a novel or familiar location. Successful navigation was correlated with the activation of CA1, posterior-dorsomedial striatum, nucleus accumbens core and infralimbic cortex when allocentric-trained mice needed to use a novel route. Allocentric navigation from a familiar route activated dorsomedial striatum, nucleus accumbens, prelimbic and infralimbic cortex. None of the structures analyzed was significantly activated in egocentric-trained mice, irrespective of the starting position. These data suggest that a flexible use of stored allocentric information, that allows goal finding even from a location never explored during training, induces a shift from fronto-striatal to hippocampal circuits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347635 | PMC |
http://dx.doi.org/10.1038/s41598-020-68025-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!