Various manifestations of small polarons strongly affect the linear and nonlinear optical properties of the oxide crystal lithium niobate ([Formula: see text], LN). While related transient absorption phenomena in LN have been extensively studied in recent decades, a sound microscopic picture describing the blue-green (photo)luminescence of lithium niobate single crystals is still missing. In particular, almost nothing is known about: (i) the luminescence build-up and (ii) its room temperature decay. We present here the results of our systematic experimental study using nominally undoped and Mg-doped LN crystals with different Mg concentration. Picosecond luminescence was detected by means of femtosecond fluorescence upconversion spectroscopy (FLUPS) extended to the inspection of oxide crystals in reflection geometry. Two distinct luminescence decay components on the picosecond time scale are revealed. While a short exponential decay is present in each sample, a longer non-exponential decay clearly depends on the crystal composition. Since transient absorption spectroscopy excludes geminate small polaron annihilation as microscopic cause of the luminescence, both decay components are discussed in the context of self-trapped exciton (STE) transport and decay.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347870PMC
http://dx.doi.org/10.1038/s41598-020-68376-6DOI Listing

Publication Analysis

Top Keywords

lithium niobate
12
picosecond luminescence
8
upconversion spectroscopy
8
transient absorption
8
luminescence decay
8
decay components
8
decay
6
luminescence
5
superposed picosecond
4
luminescence kinetics
4

Similar Publications

We propose and demonstrate integrated photonic crystal (PhC) beam splitters based on X-cut thin film lithium niobate (TFLN). Its working principle is based on bandgap guidance and total reflection in the PhC slab. We designed two structures: one features a triangular lattice, while the other exhibits a tetragonal lattice.

View Article and Find Full Text PDF

Chirp modulation can generate a relatively flat electro-optic frequency comb (EO comb) and offers the advantage of frequency reconfigurability, demonstrating significant potential in high-precision sensing and absorption spectroscopy measurements. However, nonresonant devices such as waveguides are susceptible to limitations in modulation efficiency and bandwidth during electro-optic modulation. In this paper, by utilizing chirp modulation resonance mode, we have realized an EO comb based on a lithium niobate resonator with small tooth spacing and high flatness.

View Article and Find Full Text PDF

Metasurfaces consisting of subwavelength structures have shown unparalleled capability in light field manipulation. However, their functionalities are typically static after fabrication, limiting their practical applications. Though persistent efforts have led to dynamic wavefront control with various materials and mechanisms, most of them work in free space and require specialized materials or bulky configurations for external control.

View Article and Find Full Text PDF

Congruent lithium niobate is a type of lithium niobate crystal with a mature growth process and is widely used in nonlinear optics research. Its refractive index accuracy will play a crucial role in the research and application of nonlinear optics. In this paper, we theoretically analyze the accuracy and reliability of nonlinear methods and experimentally measure the refractive index of ordinary light at different wavelengths and temperatures in a non-critical phase matching LN crystal by the sum-frequency generation and spontaneous parametric down-conversion processes, with the help of the existing accurate Sellmeier equation for the refractive index of extraordinary light.

View Article and Find Full Text PDF

Mid-infrared dual-comb spectroscopy offers significant advantages by combining the high sensitivity of mid-infrared spectroscopy with the high spectral resolution and rapid acquisition of the dual-comb method. However, its effective resolution, constrained by the inherent comb line spacing, hinders its ability to resolve narrow absorption features, common in critical applications such as sub-Doppler spectroscopy, low-pressure gas analysis, and construction of the atmospheric profile. To address this challenge, we present a synchronous offset frequency tuning method for the mid-infrared dual-comb system to improve effective resolution far beyond comb line spacing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!