A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction. | LitMetric

A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction.

BMC Med Inform Decis Mak

Communication & Computer Network Lab of Guangdong, School of Computer Science & Engineering, South China University of Technology, Wushan Road, Guangzhou, 381, China.

Published: July 2020

Background: With the rapid development of sequencing technologies, collecting diverse types of cancer omics data become more cost-effective. Many computational methods attempted to represent and fuse multiple omics into a comprehensive view of cancer. However, different types of omics are related and heterogeneous. Most of the existing methods do not consider the difference between omics, so the biological knowledge of individual omics may not be fully excavated. And for a given task (e.g. predicting overall survival), these methods prefer to use sample similarity or domain knowledge to learn a more reasonable representation of omics, but it's not enough.

Methods: For the purpose of learning more useful representation for individual omics and fusing them to improve the prediction ability, we proposed an autoencoder-based method named MOSAE (Multi-omics Supervised Autoencoder). In our method, a specific autoencoder were designed for each omics according to their size of dimension to generate omics-specific representations. Then, a supervised autoencoder was constructed based on specific autoencoder by using labels to enforce each specific autoencoder to learn both omics-specific and task-specific representations. Finally, representations of different omics that generate from supervised autoencoders were fused in a traditional but powerful way, and the fused representation was used for subsequent predictive tasks.

Results: We applied our method over TCGA Pan-Cancer dataset to predict four different clinical outcome endpoints (OS, PFI, DFI, and DSS). Compared with traditional and state-of-the-art methods, MOSAE achieved better predictive performance. We also tested the effects of each improvement, which all have a positive effect on predictive performance.

Conclusions: Predicting clinical outcome endpoints are very important for precision medicine and personalized medicine. And multi-omics fusion is an effective way to solve this problem. MOSAE is a powerful multi-omics fusion method, which can generate both omics-specific and task-specific representation for given endpoint predictive tasks and improve the predictive performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477832PMC
http://dx.doi.org/10.1186/s12911-020-1114-3DOI Listing

Publication Analysis

Top Keywords

supervised autoencoder
12
clinical outcome
12
outcome endpoints
12
specific autoencoder
12
omics
9
multi-omics supervised
8
individual omics
8
generate omics-specific
8
omics-specific task-specific
8
predictive performance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!