Using recyclable materials in asphalt pavement is a fundamental design approach not only for limiting the environmental impact of the construction industry, but also for reducing the overall costs of the road infrastructures. Over the past years, road agencies have developed different policies to incorporate various types of recyclable material into conventional asphalt mixtures. reclaimed asphalt pavement (RAP) is one of the most highly recycled construction materials. However, the aged RAP binder and its stiffer and brittle characteristics compared to the fresh binder may negatively affect the performance of the recycled mixture, especially when operating in cold climates. In this study, the low-temperature response of asphalt mixture prepared with single-recycled RAP (SRRAP) and double-recycled RAP (DRRAP), prepared in the laboratory, is experimentally investigated based on creep testing performed with the bending beam rheometer (BBR). Then, the data were analyzed based on three simple mathematical models to extract information on material behavior. Finally, a new indicator named thermal stress factor () on low-temperature response is proposed. Relatively poorer performance was observed from SRRAP mixture compared to the asphalt mixture prepared with virgin material. However, the low-temperature response between SRRAP and DRRAP did not present significant differences. The values of support the experimental results and suggest the possibility of considering re-recycling technology for further research with the objective of a possible application in the asphalt pavement industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372481PMC
http://dx.doi.org/10.3390/ma13133032DOI Listing

Publication Analysis

Top Keywords

asphalt pavement
16
low-temperature response
12
reclaimed asphalt
8
asphalt mixture
8
mixture prepared
8
asphalt
7
double-recycled reclaimed
4
pavement
4
pavement laboratory
4
laboratory investigation
4

Similar Publications

The global asphalt production growth rate exceeded 10% in the past decade, and over 90% of the world's road surfaces are generated from asphalt materials. Therefore, the issue of asphalt aging has been widely researched. In this study, the aging of asphalt thin films under various natural conditions was studied to prevent the distortion of indoor simulated aging and to prevent the extraction of asphalt samples from road surfaces from impacting the aged asphalt.

View Article and Find Full Text PDF

Ascertaining the Environmental Advantages of Pavement Designs Incorporating Recycled Content through a Parametric and Probabilistic Approach.

Environ Sci Technol

January 2025

College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China.

Reclaimed asphalt pavement (RAP) is a widely used end-of-life (EoL) material in asphalt pavements to increase the material circularity. However, the performance loss due to using RAP in the asphalt binder layer often requires a thicker layer, leading to additional material usage, energy consumption, and transportation effort. In this study, we developed a parametric and probabilistic life cycle assessment (LCA) framework to robustly compare various pavement designs incorporating recycled materials.

View Article and Find Full Text PDF

Studies on triaxial contact stresses and asphalt pavement rutting are of great significance for traffic safety and the durability of the asphalt pavement. Our new approach considers more evaluating indicators by investigating compressive creep, vertical, and longitudinal permanent deformation to analyse asphalt pavement rutting under triaxial contact stress during typical driving conditions. For this purpose, firstly sophisticated three-dimensional finite element models encompassing the truck-bus tire and asphalt pavement temperature are developed.

View Article and Find Full Text PDF

In order to enhance the aging resistance, high temperature stability and low temperature crack resistance of asphalt pavement materials, 0.06% oxidized graphene (GO) and 12% polyurethane (PU) were used as composite modifiers to modify the base asphalt. The RTFOT test was conducted to evaluate the anti-aging performance of the modified asphalt.

View Article and Find Full Text PDF

Numerical testing method and mechanical property evaluation of large particle size asphalt mixture.

PLoS One

January 2025

Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an, Shaanxi, China.

The large particle size asphalt mixture with nominal maximum aggregate size 53 mm(LSAM-50) has good technical and economic performance and will become an effective technical way to build a full-thick long-life asphalt pavement with Chinese characteristics. In order to reveal the mechanical properties and influencing factors of LSAM-50 in depth, a numerical test method for the mechanical properties of the large particle size LSAM-50 asphalt mixture was developed, and a reasonable specimen size for LSAM-50 performance test was proposed by combining the numerical test and the indoor test. The results show that: LSAM-50 numerical test conditions are the calculation time step 10-3 s/step, the loading rate is 2 mm/min (uniaxial compression numerical test) and 50 mm/min (splitting numerical test) when LSAM-50 numerical experiment calculation rate and numerical experiment accuracy are better; after the size of the specimen reaches 200×160mm, the influence of the size effect is eliminated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!