Over recent years, investigations of coordination polymer thin films have been initiated due to their unique properties, which are expected to be strongly enhanced in the thin film form. In this work, a crystalline [Fe(HO)][Nb(CN)]∙4HO (1) film on a transparent Nafion membrane was obtained, for the first time, via ion-exchange synthesis. The proper film formation and its composition was confirmed with the use of energy dispersive X-ray spectroscopy and infrared spectroscopy, as well as in situ Ultraviolet-Visible (UV-Vis) spectroscopy. The obtained film were also characterized by scanning electron microscopy, X-ray diffraction, and magnetic measurements. The [Fe(HO)][Nb(CN)]∙4HO film shows a sharp phase transition to a long-range magnetically ordered state at = 40 K. The 1 film is a soft ferromagnet with the coercive field = 1.2 kOe. Compared to the bulk counterpart, a decrease in critical temperature and a significant increase in the coercive field were observed in the films indicating a distinct size effect. The decrease in could also have been related to the possible partial oxidation of Fe ions to Fe, which could be efficient, due to the large surface of the thin film sample.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372376PMC
http://dx.doi.org/10.3390/ma13133029DOI Listing

Publication Analysis

Top Keywords

film
8
ion-exchange synthesis
8
thin film
8
[feho][nbcn]∙4ho film
8
coercive field
8
magnetic structural
4
structural spectroscopic
4
spectroscopic properties
4
properties ironii-octacyanoniobateiv
4
ironii-octacyanoniobateiv crystalline
4

Similar Publications

Thickness Dependent Structural Transition in Ph-BTBT-10 Thin Films and Stabilization of the Ubiquitous Interface Bilayer.

ACS Appl Mater Interfaces

January 2025

Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC), Campus UAB, Carrer dels Til·lers, s/n, Bellaterra, 08193 Barcelona, Spain.

The influence of the film/substrate interface and the role of film thickness on the structural transition temperature for thin films of the asymmetric BTBT derivative 7-decyl-2-phenyl[1]benzothieno[3,2-][1]-benzothiophene (Ph-BTBT-10) have been addressed by using Kelvin probe force microscopy (KPFM) and synchrotron grazing incidence wide angle X-ray scattering (GIWAXS). Our data strongly suggest that the structural transformation from a single-layer phase to the thermodynamically stable bilayer structure develops from the bottom of the film to its surface. Contrary to observations in other organic semiconductor films, notably, the thinner the Ph-BTBT-10 film, the lower is the transition temperature.

View Article and Find Full Text PDF

Halide perovskites have attracted recent attention as thermoelectric materials due to their low thermal conductivity combined with good charge transport characteristics. The tin halide perovskites hold the highest within metal halide perovskites and offer lower toxicity than lead-containing perovskites that are well-known for photovoltaics. In this study, we partially substitute Sn (II) with Ge (II) to form mixed metal CsSnGeI perovskite thin films that have substantially improved stability, remaining in the black orthorhombic phase after hours of ambient air exposure.

View Article and Find Full Text PDF

Since the invention and commercialization of poly(-phenylene benzobisoxazole) (PBO) fibers, numerous breakthroughs in applications have been realized both in the military and aerospace industries, attributed to its superb properties. Particularly, PBO nanofibers (PNFs) not only retain the high performance of PBO fiber but also exhibit impressive nanofeatures and desirable processability, which have been extensively applied in extreme scenarios. However, no review has yet comprehensively summarized the preparation, applications, and prospective challenges of PNFs to the best of our knowledge.

View Article and Find Full Text PDF

Two-dimensional molybdenum ditelluride (2D MoTe) is an interesting material for artificial synapses due to its unique electronic properties and phase tunability in different polymorphs 2H/1T'. However, the growth of stable and large-scale 2D MoTe on a CMOS-compatible Si/SiO substrate remains challenging because of the high growth temperature and impurity-involved transfer process. We developed a large-scale MoTe film on a Si/SiO wafer by simple sputtering followed by lithium-ion intercalation and applied it to artificial synaptic devices.

View Article and Find Full Text PDF

Recently, there has been a great interest in the development of innovative wound dressing materials based on natural bioactives, as they can accelerate the healing process and address the issues related to traditional wound dressings. The current study focuses on developing a novel derivative of guar gum (GG) and gallic acid (GA) using a simple, free radical-mediated polymerization reaction aimed at enhancing the antioxidant properties of GG. Multiple spectroscopic investigations were performed to validate the GA-GG conjugate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!