Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aims: Although patients supported with a Continuous-Flow Left Ventricular Assist Device (CF-LVAD) are hemodynamically stable, their exercise capacity is limited. Hence, the aim of this work was to investigate the underlying factors that lead to peak and submaximal exercise intolerance of CF-LVAD supported patients.
Methods: Seven months after CF-LVAD implantation, eighty three patients performed a maximal cardiopulmonary exercise test and a six minute walk test. Peak oxygen uptake and the distance walked were measured and expressed as a percentage of the predicted value (%VO2p and %6MWD, respectively). Preoperative conditions, echocardiography, laboratory results and pharmacological therapy data were collected and a correlation analysis against %VO2p and %6MWD was performed.
Results: CF-LVAD patients showed a relatively higher submaximal exercise capacity (%6MWD = 64±16%) compared to their peak exertion (%VO2p = 51±14%). The variables that correlated with %VO2p were CF-LVAD parameters, chronotropic response, opening of the aortic valve at rest, tricuspid insufficiency, NT-proBNP and the presence of a cardiac implantable electronic device. On the other hand, the variables that correlated with %6MWD were diabetes, creatinine, urea, ventilation efficiency and CF-LVAD pulsatility index. Additionally, both %6MWD and %VO2p were influenced by the CF-LVAD implantation timing, calculated from the occurrence of the cardiac disease.
Conclusion: Overall, both %6MWD and %VO2p depend on the duration of heart failure prior to CF-LVAD implantation. %6MWD is primarily determined by parameters underlying the patient's general condition, while %VO2p mostly relies on the residual function and chronotropic response of the heart. Moreover, since %VO2p was relatively lower compared to %6MWD, we might infer that CF-LVAD can support submaximal exercise but is not sufficient during peak exertion. Hence concluding that the contribution of the ventricle is crucial in sustaining hemodynamics at peak exercise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347393 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235684 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!